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 73 

Abstract 74 

Annual cycle events may be interlinked, influence following annual cycle stages and may alter 75 

performance of individuals. Such links, called carry-over effects, can explain individual variation in 76 

timing or reproductive success in migratory species. Identifying the key links affecting fitness may 77 

reveal mechanisms of species population dynamics but the current evidence for the strongest carry-78 



over effects is equivocal. Here, we aim at assessing carry-over effects in great reed warblers 79 

Acrocephalus arundinaceus, a long-distance migratory songbird, using 103 full-annual tracks from 80 

three European and two Asian breeding populations. Our results showed strong positive 81 

relationships within autumn and spring migration periods and buffering capacity of the non-breeding 82 

period preventing events to carry over between these periods. Moreover, we found no profound 83 

relation between the non-breeding habitat quality or seasonality (quantified using stable isotopes 84 

and remote sensing data) and the timing of spring migration. The strongest carry-over effects 85 

occurred in individuals from the southern European breeding population compared to the northern 86 

and the central European populations. A moderate relationship between the habitat seasonality 87 

during moult and the spring migration timing indicates the importance of the complete moult. The 88 

overall weak carry-over effects of non-breeding habitat conditions found in this study contrast with 89 

previous results and imply between-species differences in these crucial relationships. Moreover, the 90 

population-specific carry-over effects highlight the importance of multi-population approach and 91 

advise caution in interpretation of results from single-population studies. Finally, the carry-over 92 

effect from the moulting period indicates significance of a so far neglected link in the species.  93 

 94 

Significance statement  95 

Environmental conditions vary in space and time. Therefore, migratory species adjust timing of 96 

migration in order to maximise their fitness. However, the links between annual cycle events in 97 

multiple populations and the consequences of environmental conditions outside the breeding range 98 

are scarcely known. In this study, we used tracking data of the great reed warbler, an insectivorous 99 

bird species breeding across western Eurasia and wintering in Africa, to study a complex system of 100 

links between annual events. We found that the strength of these links differed between 101 

geographically distinct populations but not between sexes. Moreover, harsh environmental 102 

conditions during moult delayed timing of subsequent events. Our findings could help explain large-103 

scale differences in population size changes observed in some species and highlight the importance 104 



of energetically demanding moult period for the life of migratory species. Finally, our results 105 

demonstrate the need for multi-population approach in studies on seasonal interactions.  106 

Keywords 107 

migration, remote sensing, seasonal interactions, stable isotope, tracking 108 

  109 

 110 

 111 

Introduction  112 

Identifying key periods that affect individual fitness is crucial for our ability to understand population 113 

changes, especially in declining long-distance migrants (Sanderson et al. 2006; Vickery et al. 2014). 114 

Besides impacting individual fitness in a given phase of the annual cycle (Newton 1998; Robinson et 115 

al. 2007), regional conditions may also carry over to the subsequent phases and impose additional 116 

fitness costs (Harrison et al. 2011; Senner et al. 2015). Therefore, knowing carry-over effects within 117 

the annual cycles is essential for a better understanding of links between environmental conditions 118 

and population dynamics (Norris and Taylor 2006; Rakhimberdiev et al. 2018). 119 

 Previous studies mostly focused on delayed fitness consequences of non-breeding habitat 120 

quality in long-distance migratory birds but the evidence for such a relationship is equivocal. Some 121 

studies found support for this link (e.g. Marra et al. 1998; Gunnarsson et al. 2005; Goodenough et al. 122 

2017), some found evidence in some years or only for a specific group of individuals (e.g. Rockwell et 123 

al. 2012; Drake et al. 2013; López-Calderón et al. 2017), while other studies found no support for this 124 

association (Drake et al. 2014; Pedersen et al. 2016; Briedis et al. 2018). In contrast, there is growing 125 

evidence for strong relationships between consecutive events as well as for buffering capacity of the 126 

non-breeding period that may prevent the accumulation of carry-over effects within the annual cycle 127 

(Senner et al. 2014; van Wijk et al. 2017; Briedis et al. 2018; Gow et al. 2019). Despite extensive 128 

efforts to identify the most important carry-over effects, there is still a lack of knowledge of delayed 129 



fitness consequences of non-breeding habitat seasonality or habitat conditions during the moult 130 

period (Sultan and Janicot 2003; Buttemer et al. 2019).  131 

 The spatiotemporal organization of annual cycles can differ between males and females as 132 

well as with geographic origin (Conklin et al. 2010; Briedis et al. 2019). This may lead to sex-specific 133 

differences in habitat use (Marra and Holmes 2001; Catry et al. 2004) and exposure to harsh 134 

environmental conditions, inducing delayed fitness costs different for females and males (Briedis et 135 

al. 2017; Lerche-Jørgensen et al. 2018). The current evidence for sex-specific carry-over effects 136 

within the annual cycle is inconclusive, supporting all possible combinations of effects such as 137 

stronger effects in males (López-Calderón et al. 2017), stronger effects in females (Saino et al. 2017) 138 

or mixture of sex-specific differences in different links (Norris et al. 2004). Moreover, breeding 139 

latitude seems to have only a weak impact on the strength of carry-over effects (Gow et al. 2019). 140 

Consequently, sex differences in carry-over effects can have density-dependent impacts on 141 

population dynamics (Briedis and Bauer 2018) and spatial patterns in carry-over effects can explain 142 

geographic patterns in population trends (Hanzelka et al. 2019).  143 

 The breeding and migration ecology of the great reed warbler (Acrocephalus arundinaceus), 144 

a Palearctic-African long-distance migratory passerine, is well known (Lemke et al. 2013; Koleček et 145 

al. 2016; Hasselquist et al. 2017). Great reed warblers from a single breeding population spread 146 

across large areas within the non-breeding range covering a substantial part of sub-Saharan Africa 147 

(Koleček et al. 2016). The majority of individuals undertake intra-tropical movements during the 148 

non-breeding period in relation to habitat suitability (Koleček et al. 2018) in the highly seasonal 149 

regions of sub-Saharan Africa (Sultan and Janicot 2003). Moreover, the timing of these intra-tropical 150 

movements often coincides with the end of complete moult, which starts shortly after arrival at the 151 

non-breeding grounds (Pearson 1975; Hedenström et al. 1985; Bensch et al. 1991; Sorensen et al. 152 

2016). Finally, there is a strong positive relationship between early breeding site arrival and the 153 

number of fledglings and recruits (Hasselquist 1998; Tarka et al. 2015).  154 



 Here, we aim at identifying the carry-over effects in great reed warblers and testing for 155 

differences in carry-over effects between sexes and populations. We focus on the effects of the non-156 

breeding and moulting period habitat conditions on individual performance in subsequent annual 157 

cycle stages. In order to identify the carry-over effects, we use a robust dataset of full-annual tracks 158 

in combination with multiple metrics of non-breeding habitat quality and seasonality.  159 

 160 

Predictions  161 

1. We predict strongest relations between consecutive events (Piersma 1987; Gow et al. 2019). 162 

2. The non-breeding period will buffer against carry-over effects between the autumn and spring 163 

migration periods (Senner et al. 2014; Briedis et al. 2018; Gow et al. 2019). 164 

3. Low quality and high seasonality of non-breeding habitats will delay subsequent annual cycle 165 

phases (Marra et al. 1998; Bearhop et al. 2004; Norris et al. 2004). 166 

4. Weak links between timing of events will be more frequent in males than in females due to their 167 

earlier timing and thus higher probability of encountering adverse environmental conditions during 168 

spring migration (Lemke et al. 2013; Briedis et al. 2017, 2019; Lerche-Jørgensen et al. 2018). 169 

Moreover, impacts of non-breeding habitat conditions will be stronger on females under the 170 

scenario of sexual habitat segregation favouring males (Marra and Holmes 2001). 171 

5. Weak relations between timing of events and strong impacts of non-breeding habitat conditions 172 

on timing of subsequent events will be more frequent in populations breeding at higher latitudes. 173 

This pattern will arise from larger migration distances, more stopovers and higher probability of 174 

unfavourable environmental conditions en route (Briedis et al. 2017). These differences will diminish 175 

the effects of timing and the impacts of non-breeding habitat conditions compared with populations 176 

from lower breeding latitudes.    177 

6. Low habitat quality experienced during the complete moult will delay subsequent events more 178 

than the overall non-breeding habitat conditions as moult is a physiologically demanding life cycle 179 

event (Murphy 1996; Buttemer et al. 2019).   180 



Materials and methods 181 

Tracking data and feather samples 182 

We used light-level geolocator data covering full annual cycles of 103 adult great reed warblers (38 183 

females, 64 males and 1 of unknown sex). The birds tracked between 2010 and 2018 come from 184 

three European breeding populations – Sweden (SE; northern; n = 37; 59°N, 15°E), Czech Republic 185 

(CZ; central; n = 35; 49°N, 18°E), Bulgaria (BG; southern; n = 21; 44°N, 26°E), and two Asian breeding 186 

populations – Turkey (TR; n = 4; 42°N, 36°E) and Kazakhstan (KZ; n = 6; 44°N, 77°E; Fig. 1). The 187 

tracked individuals have been recaptured in the vicinity of their breeding/tagging sites and the 188 

archived data thus reflect migratory behaviour of surviving individuals that did not disperse outside 189 

the study sites. For details on the number of recaptured individuals and geolocator specification see 190 

Electronic Supplementary Material (ESM) 1. During geolocator recovery, we collected either the 191 

distal part of a fifth primary (BG), a third tail feather (SE, KZ and TR), or a second tertial (CZ) for 192 

stable isotopic analyses. These feathers are assumed to be moulted in Africa during the first part of 193 

the non-breeding period (Hedenström et al. 1985; Bensch et al. 1991). We also collected each of 194 

these three feather types from 30 individuals in the SE, CZ and BG populations in 2018 to check for 195 

intra-individual variation in stable carbon isotope signatures. We found no differences in the stable 196 

isotopic signal between feather types (F2,58 = 0.26; P = 0.772) using a linear mixed-effect model with 197 

feather type as a fixed effect and individual identity as random intercept.  198 

 199 

Spatiotemporal information on annual cycles 200 

We determined the timing of annual cycle events, migration speed and geographic locations of the 201 

non-breeding sites using data from light-level geolocators. To this end, we estimated sunrises and 202 

sunsets from the log-transformed light-level recordings using preprocessLight function from twGeos 203 

package (Wotherspoon et al. 2016). For further analysis, we used functions from GeoLight package 204 

version 2.0.0 (Lisovski and Hahn 2012): we filtered unlikely sun events (loessFilter function; k = 2), 205 

identified stationary and migratory periods (changeLight function; quantile = 0.9; days = 2) and 206 



calculated geographic positions of stationary periods using in-habitat calibration estimating the sun 207 

elevation angle (SEA) from the known breeding period.  208 

 When the resulting positions were unreliable (e.g. in the sea or desert; n = 11 individuals), 209 

we replaced in-habitat calibration by Hill-Ekstrom calibration estimating SEAs by minimising variation 210 

of the latitude estimates. Subsequently, we used the SEA to calculate positions of all stationary sites 211 

for each individual. For each stationary period, we defined the mode of the raw positions as a site 212 

and considered all sites south of 20°N and lasting more than 23.5 days (longer than 90% of all 213 

stationary locations north of 20°N) as individual non-breeding sites. Timing of first and last position 214 

estimates represent individual stationary site arrivals and departures. The impact of geolocator 215 

attachment on event timing is considered negligible (Brlík et al. 2020). It was not possible to record 216 

data blind because our study involved focal animals in the field. 217 

 In 10 individuals from SE and CZ for which the arrival back to the breeding site was not 218 

recorded, we used the individual date of the first colour-ring resighting at the breeding site as the 219 

geolocator-derived and observed breeding site arrivals are highly correlated in these populations 220 

(Pearson’s correlation test: ρ = 0.99, df = 25, P < 0.001).  221 

 222 

Habitat quality assessment  223 

Habitat conditions at individual non-breeding sites were described using two approaches – by 224 

extracting remotely sensed Normalized Difference Vegetation Index (NDVI) values at geolocator-225 

derived sites and by stable carbon isotope analysis from feathers moulted in Africa.  226 

 Firstly, we used NDVI data as a proxy for primary productivity and seasonality of vegetation 227 

(Pettorelli et al. 2005) and abundance of insects (Lassau and Hochuli 2008; Deveson 2013; Sweet et 228 

al. 2015), the main diet of the great reed warblers (Cramp 1992; Dyrcz 1995), in a buffer surrounding 229 

the non-breeding sites of tracked individuals. For each individual, we extracted a series of weekly 230 

mean NDVI values in the region surrounding the non-breeding site (44×44 km) using pre-processed, 231 

noise- and cloud-free NDVI measurements with 4-km resolution (accessed from: 232 



ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/geo_TIFF/). The time 233 

period for NDVI acquisition was set by the occupation period of the respective site from geolocators. 234 

We determined three habitat characteristics: (i) the ‘greenness’ as the average of weekly values, (ii) 235 

‘greenness trend’ as the sum of between-week differences and (iii) the ‘greenness seasonality’ as the 236 

average of absolute between-week differences (ESM 2). We calculated a weighted average of the 237 

non-breeding site habitat characteristics in individuals with multiple non-breeding sites with a 238 

number of weeks spent at these sites as a weight. Due to the low accuracy of latitude estimates 239 

derived from geolocators (Fudickar et al. 2012; Lisovski et al. 2012), we collected NDVI 240 

measurements from two extended non-breeding regions – 144×44 km and 244×44 km (latitude × 241 

longitude) – and calculated path models employing the path structure from the set of path models 3 242 

(described below). Since the results did not differ (ESM 3), we use the most precise data from the 243 

44×44-km non-breeding region. 244 

 Habitat characteristics during the moulting period were defined as those from the first non-245 

breeding sites in individuals with more than one non-breeding site. In individuals with one non-246 

breeding site only, we extracted the habitat characteristics for the period between the arrival at the 247 

non-breeding grounds and average departure from the first non-breeding site in the individuals with 248 

more than one non-breeding site (7th December, SD = 22 days, n = 79). High greenness values are 249 

assumed to reflect high-quality habitats, high greenness seasonality values represent habitats with 250 

high temporal variability of greenness values and high positive greenness trend values reflect 251 

habitats with a high increase in greenness measurements over time.  252 

 Secondly, we used stable carbon isotope ratios from feathers presumably grown at the first 253 

non-breeding site to estimate habitat quality during the moulting period. Stable isotopes are 254 

transported in food webs and archived in metabolically inert tissues during their synthesis. The 255 

stable isotopic signal then reflects the diet as well as the habitat where the feather was grown 256 

(Hobson 2011). The 13C/12C values differ between C3 and C4 plants (Tipple and Pagani 2007), which 257 

have specific temperature and humidity optima for growth (Collatz et al. 1998; Sage et al. 1999). The 258 

ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/geo_TIFF/


resulting stable carbon isotope ratio can thus be used as a proxy for habitat quality on the dry–moist 259 

gradient (Bearhop et al. 2004) or used as a proxy for arthropod biomass (Studds and Marra 2005). 260 

Stable isotope analysis of feather samples in our study followed the procedure detailed in Procházka 261 

et al. (2018). Obtained sample 13C/12C ratios are expressed in delta notation (δ13C; mean = –15.56 ‰; 262 

SD = 3.20; range: [–22.31; –10.45]) relative to the Vienna Pee Dee Belemnite standard. Repeated 263 

measures of internal laboratory standards (Institute of Limnology, University of Konstanz, Germany) 264 

indicate that our measurement error was ± 0.05‰ (SD). More negative δ13C values reflect C3-265 

dominated and thus more moist habitats.    266 

 267 

Carry-over effects calculation  268 

We employed partial least square path models (hereafter ‘path models’), to identify the direction 269 

and quantify the strength of carry-over effects (Dijkstra and Henseler 2015; Hair et al. 2017) 270 

adopting plspm function from plspm R package (Sanchez et al. 2017). We used the timing of events, 271 

migration speed and non-breeding habitat characteristics as states of the individual annual cycle 272 

events for developing an initial path diagram based on predictions 1–3 (n = 103 individuals, Table 1, 273 

ESM 4).  274 

 We then prepared a set of reduced initial path models testing predictions 4–6 and using data 275 

differing in sample sizes as we used data from European populations where both sexes were tracked 276 

(prediction 4) and where a sufficient number of tracks enabled comparisons (prediction 5), or all 277 

individuals with available feather sample δ13C values (prediction 6), respectively. Therefore, we also 278 

adjusted the number of relationships within the initial path model following the rule of a minimum 279 

of 10 observations per explanatory variable (Cohen 1992; Barclay et al. 1995). In total, we prepared 280 

four sets of path models examining: 281 

1. Carry-over effects within all stages of the annual cycle (path model 1; predictions 1–3; n = 103 282 

individuals; ESM 4).  283 



2. Sex-specific differences in carry-over effects (set of path models 2; predictions 1–4; European 284 

populations only; females = 38, males = 54).  285 

3. Population-specific differences in carry-over effects (set of path models 3; predictions 1–3 and 5; 286 

European populations only: SE = 37, CZ = 35 and BG = 21). 287 

4. Impact of environmental conditions experienced during moult vs. the entire non-breeding period 288 

on the subsequent phases (set of path models 4; predictions 1–3 and 6; n = 86; see ESM 5 for all 289 

reduced initial path models).  290 

 291 

We refer to path coefficients >0.5 as strong effects, 0.3–0.5 as moderate effects and coefficients 292 

<0.3 as weak effects (Cohen 1977). We consider path coefficients statistically important when 95% 293 

confidence intervals (bootstrapped with 1×104 iterations) do not overlap zero. We scaled and 294 

centred all variables within a population prior to fitting path model 1, and the sets of path models 2 295 

and 4. As we found little or no inter-annual differences in explanatory variables, we do not 296 

incorporate year into path models (see ESM 6). The group average of path coefficients was 297 

calculated from absolute values using vglm function (following folded normal distribution) from 298 

VGAM R package (Yee 2019).  299 

 Moreover, we employed linear mixed-effects models to test for sex-specific differences in 300 

habitat characteristics: We ran separate models for greenness, greenness trend and greenness 301 

seasonality as response variables, each with sex as an explanatory variable and population identity 302 

as random intercept (lmer function from lme4 R package; Bates et al. 2015). We used R version 3.5.3 303 

for the analyses (R Core Team 2019).  304 

 305 

Results 306 

We found the strongest positive relationships within migration periods, i.e. between the departure 307 

from the breeding sites and the arrival at the non-breeding grounds (path coefficient = 0.62; 95% 308 

confidence interval (CI) [0.49; 0.76]), and between the departure from the non-breeding sites and 309 



arrival at the breeding sites (0.78 [0.65; 0.92]). Long stopovers during both migration periods were 310 

associated with late arrival at the non-breeding sites (0.39 [0.23; 0.53]), and to the breeding sites 311 

(0.34 [0.16; 0.52]), respectively. The later birds departed from the non-breeding grounds the shorter 312 

were the stopovers during the spring migration (–0.38 [–0.55; –0.20]; Fig. 2). In contrast, we 313 

detected only weak links between autumn and spring periods (Fig. 2, ESM 7). 314 

 The assessment of non-breeding habitat quality and seasonality effects on subsequent 315 

annual cycle stages revealed only weak effects. However, individuals spending the non-breeding 316 

period in places with positive greenness trend over time departed later than individuals from 317 

deteriorating habitats (0.26 [0.06; 0.43]; Fig. 2; ESM 7). 318 

 We did not find differences in either direction or strength of carry-over effects between 319 

males and females (Fig. 3A). Moreover, the sex differences in habitat quality and seasonality of non-320 

breeding sites were negligible (Table 2).  321 

 We detected the strongest carry-over effects in the annual cycle events of birds from the 322 

southern breeding population (BG, mean of absolute path coefficient values = 0.48, 95% CI [0.16; 323 

0.79]) compared to the central (CZ, 0.26 [-0.10; 0.60]) and northern (SE, 0.28 [-0.02; 0.59]) European 324 

populations. These differences were consistent in relationships between the timing of annual cycle 325 

events (SE, 0.42 [0.24; 0.61]; CZ, 0.36 [0.12; 0.60]; BG, 0.61 [0.30; 0.93]) as well as in the impacts of 326 

the non-breeding habitat quality on the subsequent phases (SE, 0.08 [-0.18; 0.35]; CZ, 0.16 [-0.09; 327 

0.41]; BG, 0.30 [0.15; 0.45]). Individuals from the southern breeding population (BG) using non-328 

breeding habitats with high average greenness departed earlier from their non-breeding grounds 329 

(path coefficient = –0.49; 95% CI [–0.75; –0.17]). In contrast, we found a negligible relationship 330 

between average greenness and the departure from non-breeding grounds for the central and 331 

northern European breeding populations but higher average greenness was related to shorter 332 

stopovers during spring migration in these two populations (Fig. 3B).  333 

 While longer autumn stopovers were positively related to the departure from the breeding 334 

site in the northern population (SE, path coefficient = 0.41; 95% CI [0.09; 0.67]), these were 335 



negatively related in both the central (CZ, -0.39 [-0.61; -0.07]) and the southern (BG, -0.69 [-0.87; -336 

0.43]) European breeding populations (Fig. 3B). In all three populations, we detected strong positive 337 

relationships between departure from the breeding site and arrival at the non-breeding grounds as 338 

well as between departure from the non-breeding grounds and arrival at the breeding site. The 339 

highest variation in this relationship was observed in the southern population and the lowest 340 

variation in the northern European population (Fig. 3B).  341 

 Higher greenness seasonality during moult entailed longer spring migration and slightly 342 

delayed event timing (mean of absolute path coefficient values = 0.25; 95% CI [0.23; 0.27]) 343 

compared to greenness seasonality during the entire non-breeding period (0.16 [0.10; 0.23]). In 344 

contrast, greenness trend during the entire non-breeding period had a slightly stronger effect on the 345 

timing of departure from the non-breeding grounds and arrival at the breeding site as well as on the 346 

duration of spring stopovers (0.18 [0.08; 0.29]) than greenness trend during the moulting period 347 

(0.04 [-0.97; 1.06]). We found a more negative feather δ13C values (reflecting moist habitats) related 348 

to later departures from the non-breeding grounds (path coefficient = –0.28; 95% CI [–0.53; –0.04]; 349 

Fig. 3C).  350 

 351 

Discussion 352 

In this study, we describe a network of carry-over effects within the whole annual cycle of great reed 353 

warblers from across their breeding range. Our results support the prediction of the strongest 354 

relationships between consecutive events and the buffering capacity of the non-breeding period 355 

hypothesis. Surprisingly, we did not find evidence for strong or moderate effects of various 356 

environmental characteristics during the non-breeding period on subsequent stages of the annual 357 

cycle. However, spending the moult period in habitats with higher seasonality entailed slower spring 358 

migration and later arrival at the breeding sites. We found no profound differences in strength of 359 

carry-over effects between males and females. However, carry-over effects were strongest for 360 

individuals from the southern European breeding population (BG).  361 



 362 

Carry-over effects within the full annual cycle  363 

Consecutive events within the migration periods were most closely linked, supporting our 364 

prediction 1 based on the previously proposed ‘domino effect’ hypothesis (Piersma 1987). This 365 

temporal pattern likely arises from an ‘optimal migration strategy’ which minimizes time spent on 366 

migration (Hedenström 2008). The strong links within the spring migration period correspond with 367 

strong selection for early arrivals in both male and female great reed warblers (Tarka et al. 2015). 368 

The positive relationships between migration speed and subsequent events suggest co-effects of 369 

environmental conditions or habitat quality at stopover sites causing delay or fitness costs in 370 

subsequent phases (Briedis et al. 2017; Rakhimberdiev et al. 2018; Lindström et al. 2019). In 371 

contrast, we detected no firm links between timing of autumn and spring migration periods 372 

suggesting a large buffering capacity of the non-breeding period (Briedis et al. 2018; Gow et al. 373 

2019). This effect may be further reinforced by intra-tropical movements which usually occur when 374 

habitats deteriorate (Koleček et al. 2018).  375 

 In contrast to our prediction 3, we did not detect strong relationships between any spring 376 

migration timing and any non-breeding habit quality or seasonality measures. The absence of such 377 

links may be explained by the non-breeding habitat use and intra-tropical movements. Firstly, 378 

observational studies have highlighted the species’ preference for small-scale habitat patches with 379 

higher water availability throughout the non-breeding period (Becquaert 1952; Ruwet 1965; De Roo 380 

and Deheegher 1969; Sorensen et al. 2015). Under such conditions, non-breeding habitat quality 381 

with coarser resolution used in our study may not be a decisive limiting factor, and thus not result in 382 

measurable habitat-induced carry-over effects to subsequent phases. However, the range of δ13C 383 

values measured in feathers (see Materials and Methods section) suggests that great reed warblers 384 

use both C3- and C4-plant habitats during the moulting period. Secondly, many great reed warblers 385 

undertake intra-tropical movements that could further reduce the impact of non-breeding habitat 386 

quality on subsequent phases (Koleček et al. 2018). Importantly, the non-breeding habitat quality at 387 



the first site was found to carry over to the final non-breeding period affecting the body condition of 388 

great reed warblers but only in a dry year and the habitat conditions did not carry over into the non-389 

breeding period before departure (Sorensen et al. 2016).  390 

 391 

Importance of habitat conditions during the moulting period 392 

We found that the seasonality of habitats during the moulting period had stronger carry-over effects 393 

on subsequent phases than seasonality during the entire non-breeding period, although the carry-394 

over effects only differed slightly between these two periods.  395 

 These findings correspond to a previously observed carry-over effect of habitat quality at the 396 

first non-breeding site to the final non-breeding site, and the absence of such a relationship in the 397 

period of the departure from the non-breeding grounds (Sorensen et al. 2016). Importantly, links 398 

between autumn migration, non-breeding and spring migration periods could be stronger in smaller 399 

bird species (Martin et al. 2020) and in species with a higher sensitivity to non-breeding habitat 400 

conditions, as compared to the larger, habitat-specialist species in this study (Cramp 1992). In 401 

addition, our results suggest slight differences in broad-scale average habitat quality NDVI metric 402 

and δ13C derived from feathers.  403 

 In contrast to our prediction, we found a negative relationship between feather δ13C values 404 

and departure from the non-breeding grounds suggesting that individuals depart later from more 405 

mesic habitats than from xeric habitats. This contrasts with the results of previous studies unveiling a 406 

positive link between δ13C in bird tissues and timing of spring migration (e.g. Marra et al. 1998). 407 

Despite a common use of the δ13C value as a marker of habitat quality in migratory birds (Hobson 408 

2011), only few studies have evaluated the relationship between the δ13C values measured in 409 

vegetation and in tissues of insectivorous bird species collected in the same area (so far conducted 410 

only in Central America; Marra et al. 1998; Bearhop 2004; Studds and Marra 2005). As long as the 411 

mechanisms of δ13C transport between vegetation, insects and bird tissues are not firmly 412 

established, the links between δ13C ratios and subsequent timing should be interpreted cautiously. 413 



 Finally, to delimit the moulting period, we assumed great reed warblers to complete moult 414 

at the first non-breeding sites. However, several studies reported rare cases of great reed warblers 415 

suspending moult in the southern parts of the breeding range during the post-breeding period 416 

(Spina 1990; Copete et al. 1998). Similarly, individuals in our study could have completed moult at 417 

their second or third instead of their first non-breeding site. However, none of the studies from sub-418 

Saharan Africa (Pearson 1975; Hedenström et al. 1985; Bensch et al. 1991) reported observations of 419 

freshly moulted individuals after the arrival at the non-breeding grounds or during the latter part of 420 

the non-breeding period. Furthermore, no individuals with very fresh feathers, indicating completion 421 

of moult towards the end of winter, have been found in over 35 years of comprehensive studies of 422 

the great reed warbler population breeding in Sweden (DH and BH own observations). Therefore, we 423 

encourage future studies on carry-over effects of habitat conditions during complete moult as such 424 

relationships might have significant consequences for population dynamics of declining species 425 

(Vickery et al. 2014).  426 

 427 

Population- and sex-specific differences in carry-over effects 428 

We found the strongest carry-over effects for birds from the southern breeding population (BG) 429 

compared to birds breeding in the central and the northern European populations. Despite 430 

comparing only three populations, we had sufficient numbers of full annual tracks for each 431 

population covering multiple years, which should minimise the effect of between-year variability on 432 

the resulting spatial pattern. The most plausible explanation for such a spatial pattern is population-433 

specific migration distances and environmental conditions experienced en route. Increasing 434 

migration distance and number of stopovers (Koleček et al. 2016) for individuals breeding at higher 435 

latitudes might raise the probability of encountering unfavourable environmental conditions en 436 

route. Such conditions can cause delays of subsequent phases of the annual cycle and override 437 

effects of preceding events. In line with our prediction 5, we also detected a strong effect of non-438 

breeding habitat quality on subsequent phases of the annual cycle in the southern European 439 



population (BG) again suggesting the importance of longer migratory distances diminishing the 440 

effects of preceding events. Finally, our results indicate that both the direction and the strength of 441 

carry-over effects can differ between populations, which should be taken into consideration when 442 

interpreting results from single-population studies.  443 

 In contrast, carry-over effects were similar for females and males and we did not find any 444 

significant sex-specific differences in non-breeding habitat quality suggesting no sex segregation in 445 

the non-breeding habitats. Great reed warblers only show limited sex dimorphism in body size 446 

(males are on average 4% larger than females; Cramp 1992; Tarka et al. 2014) possibly explaining the 447 

absence of dominance-mediated segregation (Marra and Holmes 2001). The lack of sex-specific 448 

differences in carry-over effects (prediction 4) further suggests a weak impact of protandry on the 449 

strength of carry-over effects. The current evidence for sex-specific differences in carry-over effects 450 

is equivocal (Norris et al. 2004; López-Calderón et al. 2017; Saino et al. 2017) and future studies 451 

should focus on difference in carry-over effects between the sexes in more species and on impacts 452 

of sex-specific habitat use as these differences could have crucial implications for population 453 

dynamics (Briedis and Bauer 2018). 454 

 455 

Conclusions 456 

Our results complement the knowledge of carry-over effects by uncovering new relationships 457 

between the annual cycle events. Furthermore, building a network of links between annual cycle 458 

events could enable more robust comparisons of different studies. We detected population-specific 459 

differences in carry-over effects and this result might become crucial for understanding regional-460 

scale differences in timing of migration or population trends. Finally, studying full annual cycles 461 

provides a better understanding of important links and neglected periods affecting individual 462 

performance potentially influencing population dynamics.  463 

 464 
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Figure captions 666 

Fig. 1 Breeding sites (large dots) and the first non-breeding sites of 103 individuals (small dots). 667 

Shaded areas represent the breeding (beige) and the assumed non-breeding (blue) range of the 668 

great reed warbler (BirdLife International and NatureServe 2014) 669 

 670 

Fig. 2 Direction (green – positive, red – negative) and strength (line width) of carry-over effects 671 

between annual cycle events in great reed warblers (n = 103 individuals). Only paths with path 672 

coefficients >0.1 are depicted. All path coefficients with 95% confidence intervals are presented in 673 

Electronic Supplementary Material 7 674 

 675 

Fig. 3 Differences in carry-over effects between males and females (A), breeding populations (B) and 676 

periods of non-breeding period (C). The directions and strengths of carry-over effects (bars) are 677 

derived from the set of path models 2 (A; females = 38, males = 64), set of path models 3 (B; 678 

northern = 37 (SE), central = 35 (CZ) and southern = 21 (BG) and set of path models 4 (C; n = 86). 679 

Error bars depict the 95% confidence intervals 680 
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Table 1 Variables used to describe states of the annual cycle events and abbreviations used in Figs 2, 696 

3  697 

Abbreviation Description 

Depart breed Departure date from the breeding site  

Autumn migration Ratio of the stationary time to the total duration of the autumn migration  

Arrival non-breed Arrival date at the first non-breeding site 

δ13C Stable carbon isotope ratio of feathers 

Greenness Mean of weekly NDVI values  

Greenness trend  Sum of between-week differences in NDVI  

Greenness seasonality  Mean of between-week differences in NDVI  

Depart non-breed Departure date from the non-breeding site 

Spring migration Ratio of the stationary time to the total duration of the spring migration 

Arrival breed Arrival date at the breeding site  
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Table 2 Differences in non-breeding habitat conditions between males and females. Females are the 701 

reference level (females = 38, males = 64)  702 

Response variable  Estimate SE t P 

Greenness <0.01 0.01 0.71 0.48 

Greenness trend –0.03 0.02 -1.83 0.07 

Greenness seasonality <0.01 <0.01 -1.04 0.30 
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