There is a newer version of this record available.

Working paper Open Access

Novel quantitative push gravity theory poised for verification

Danilatos, Gerasimos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Chappel, J.M., Iqbal, A. &amp; Abbott, D. (2012) The gravitational field of a cube. arXiv:1206.3857v1 [physics.class-ph]</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">de Duillier, Nicolas Fatio (1929) De la cause de la pesanteur. Drei Untersuchungen zur Geschichte der Mathematik, in: Schriften der Strassburger Wissenschaftlichen Gesellschaft in Heidelberg, 10:(19-66). URL https://fr.wikisource.org/wiki/De_la_cause_de_la_pesanteur#</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Dibrov, A. (2011) Unified model of shadow-gravity and the exploding electron. Apeiron 18, 43-83</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gagnebin, B (1949) De la cause de la pesanteur. Mémoire de Nicolas Fatio de Duillier présente à la Royal Society le 26 février 1690. The Royal Society 6(2), 125-160. doi:https://doi.org/10.1098/rsnr.1949.0017</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Lorenzen, B. (2017) The cause of the allais effect solved. International Journal of Astronomy and Astrophysics 7, 69-90</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Poincaré, H. (1908) La dinamique de l' éléctron. Revue Gen. Sci. Pures Appl. 19, 386-402</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Thomas, C.M. (2014) Graviton theory of everything. http://astronomy-links.net/GToE.html</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Zumberge, Mark A., Ander, Mark E., Lautzenhiser, Ted V., Parker, Robert L., Aiken, Carlos L. V., Gorman, Michael R., Nieto, Michael Martin, Cooper, A. Paul R., Ferguson, John F., Fisher, Elizabeth, Greer, James, Hammer, Phil, Hansen, B. Lyle, McMechan, George A., Sasagawa, Glenn S., Sidles, Cyndi, Stevenson, J. Mark &amp; Wirtz, Jim (1990) The greenland gravitational constant experiment. Journal of Geophysical Research 95(B10), 15483. doi:10.1029/jb095ib10p15483</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bialy, S. &amp; Loeb, A. (2018) Could solar radiation pressure explain Oumuamua's peculiar acceleration? The Astrophysical Journal Letters 868:L1, 1-5. doi:https://doi.org/10.3847/2041-8213/aaeda8.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kajari, E., Harshman, N.L., Rasel, E.M., Stenholm, S., Sussmann, G. &amp; Schleich, W.P. (2010) Inertial and gravitational mass in quantum mechanics. arXiv doi:10.1007/s00340-010-4085-8. URL https://arxiv. org/abs/1006.1988.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bird, G.A. (1995) Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Danilatos, G.D. (1997) In-Situ Microscopy in Materials Research, chap. 2. Environmental Scanning Electron Microscopy, pp. 14-44. Kluwer Academic Publishers, Boston/Dordrecht/London.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Danilatos, G.D. (2012) Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron 43, 600-611.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Edwards, R. M. (2007) Photon-graviton recycling as cause of gravitation. Apeiron 14(3), 214-233.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gamow, G. (1949) On relativistic cosmology. Reviews of Modern Physics 21(3), 367-373. doi:10.1103/ RevModPhys.21.367.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Hogan, C.J. (1989) Mock gravity and cosmic structure. The Astrophysical Journal 340(1-10). doi:10.1086/ 167371.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Okun, R.F. (2006) The concept of mass in the einstein year. arXiv doi:10.1142/9789812772657_0001. URL https://arxiv.org/abs/hep-ph/0602037v1.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Wang, B. &amp; Field, G.B. (1989) Galaxy formation by mock gravity with dust. The Astrophysical Journal 346, 2?11. doi:10.1086/167981.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Field, G.B. (1971) Instability and waves driven by radiation in interstellar space and in cosmological models. The Astrophysical Journal 165, 29-40. doi:10.1086/150873.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Giacintucci, S., Markevitch, M., Johnston-Hollitt, M., Wik, 5 Q. D. R., Wang, H. S. &amp; Clarke, T. E. (2020) Discovery of a giant radio fossil in the ophiuchus galaxy cluster. arXiv:2002.01291 [astro-ph.GA] .</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Lomas, Robert (1999) The Man Who Invented the Twentieth Century. Headline Book Publishing. ISBN 0747275882.</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">push gravity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quantum gravity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitational law</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitational constant</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Allais effect</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">equivalence principle</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">white dwarf</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">neutron star</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">black hole</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">relativity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">graviton</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fluctuation theorem</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">theory of everything</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Maxwell's demon</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quantum field theory</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitational anomalies</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">flyby anomaly</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Pioneer anomaly</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Oumuamua</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">inertial mass</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitational mass</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitoid</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">contraction factor</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Newtonian mechanics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">classical physics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravity assist</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">solar system</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Jupiter density</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">matter</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">rest mass</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">relativistic mass</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">galaxies</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dark matter</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dark energy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">expanding universe</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">perpetual motion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">cosmology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">astrophysics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Schwarzschild</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Event horizon</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Higgs field</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Lorentz contraction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">self-similarity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">intrinsic mass</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">invariant mass</subfield>
  </datafield>
  <controlfield tag="005">20210915200416.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Please email comments to the author. 
Any feedback on this working paper is most welcome, whether it is scientifically related or any noted editing or oversighted errors. The paper has not been read by others prior to upload. Hence, feedback would be much appreciated.</subfield>
  </datafield>
  <controlfield tag="001">4284106</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1184681</subfield>
    <subfield code="z">md5:ebc66e33f4d2ce18837900b4a23f7089</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v1.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1502429</subfield>
    <subfield code="z">md5:689cc7037bbfcadbb24b0302d69a2ccf</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v2.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1520555</subfield>
    <subfield code="z">md5:5200c4afd6d61621c25b8847f4f2b06d</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v3.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1564465</subfield>
    <subfield code="z">md5:9d49833340080a1ea79b5170be850037</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v4.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1663784</subfield>
    <subfield code="z">md5:341fcc5cb1d06c4f6de5f13499668497</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v5.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1884311</subfield>
    <subfield code="z">md5:51d1c79ba328a8aee687484024557b71</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v6.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2195550</subfield>
    <subfield code="z">md5:ed64b4e9bb9fc1304a9a15ca5cb6c46f</subfield>
    <subfield code="u">https://zenodo.org/record/4284106/files/PUSH-GRAVITY-new-approach-v7.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-22</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4284106</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ESEM Research Laboratory</subfield>
    <subfield code="0">(orcid)0000-0003-3195-2832</subfield>
    <subfield code="a">Danilatos, Gerasimos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Novel quantitative push gravity theory poised for verification</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;[Note: The edits of the current version (v7) are typed in teal color font]. New work provides compelling evidence for a genuine re-appraisal of an old way to explain gravity, which has been sidelined in the periphery of science for a long time. A novel quantitative push gravity theory has been advanced on the basis of a set of primary principles (postulates), from which the derivation of classical acceleration and force by stationary massive bodies in the steady state is possible. In contrast to prior conceptions, it is shown that the absorption of gravity particles by matter need not be extremely weak and linear, in order to derive and explain the observed classical laws of gravity. Any value of the absorption coefficient by a uniform spherical mass produces a gravitational field obeying the inverse square of distance law. The gravitational constant (big G), is itself a function of the ratio of the absorption coefficient over the density of matter. The latter ratio (mass attenuation coefficient) now becomes the new universal gravitational constant of the cosmos, whilst G can vary in different locations of the universe. The measured mass of planets and stars is only an effective or apparent mass actually smaller than the real mass due to a self-shadowing or shielding effect of the absorption of gravitational particles. Any given mass appears quantitatively different depending on its spatial distribution. We now find that Newton&amp;#39;s gravitational law uses only the apparent (or effective) masses with a potentially variable G, but the inverse square distance relationship is locally preserved in the cosmos. The radiant flux of energetic particles being uniform over a region of space creates a maximum acceleration of gravity for all material bodies in that region, so that any further mass accretion over a certain upper limit does not create additional acceleration; this limit is reached when practically all gravitational particles are absorbed (saturation state) by the massive body above a saturation mass. The latter limit should be measurable, for which some tentative situations and experiments are proposed for prospective experiments and tests. The internal field of a spherical mass and the external field of a two layered sphere have been derived. The superposition principle of gravity fields has been reformulated and the Allais effect explained and calculated. The equivalence principle can now be properly understood and explained in a way that the principle per se becomes redundant under the theory being self-consistent. Matter, inertia and mass can be properly defined and understood. For moving bodies, the established relationships from special and general relativity may continue to operate within the gravitational fields created by push particles, but may need to be adapted and re-aligned within the greater framework of push gravity principles operating at any distance. These advances constitute the main part of this report purported to become a valid mathematical formulation for a basic physical interpretation or embodiment of gravity poised for verification. An attempt is made to overcome the main remaining objection of presumed catastrophic thermal accretion of absorbed particles. A further attempt is made also for the push-gravity principles to explain the vastly higher intensity gravitational fields of white dwarfs, neutron stars and black holes. It is proposed that the field of white dwarf stars is created also by push particles but of a different kind, namely, by those responsible for mediating the electric field. In the same way, the field of neutron stars is created by yet a third kind of push particles, namely, those responsible for mediating the nuclear field. The effective mass attenuation coefficient is variable around those massive bodies. In general, push particles may exist with different energy (or mass) having different mean free paths as they traverse different concentrations of masses like black holes, neutron stars, dwarfs, stars, planets, ordinary masses, atoms, nuclei, protons and all the known or unknown sub-nuclear particles. The invariable principle of momentum transfer (push) by particles directly relating to their absorption rate by the various concentrations (density) of masses could be the basis and the starting principle for a prospective unification theory of everything. Further work seems to explain a common underlying mechanism manifesting itself as effective mass and force, both of which are caused by the rate of push particles absorption. Intrinsic effective mass of lone bodies and variable effective mass of interacting bodies are liaised with a force always obeying the inverse square distance law. The general constitution equations of push gravity are now provided.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3596184</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4284106</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">workingpaper</subfield>
  </datafield>
</record>
7,230
2,277
views
downloads
All versions This version
Views 7,2302,718
Downloads 2,277397
Data volume 3.1 GB523.0 MB
Unique views 4,9392,568
Unique downloads 1,373305

Share

Cite as