Journal article Open Access

On Guided Remagnetization in Layered Nanoheterostructures

Andrii Korostil

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Andrii Korostil</dc:creator>
  <dc:description>Field-guided magnetic dynamics in magnetic multilayer nanostructures involves interconnection of the control field with localized spin states, which can occur directly or indirectly depending on the nature of the field and spin polarization. At the control electromagnetic field, this interconnection can be directly induced by the photon-induced spin-flip processes and indirectly by a bias field during antiferromagnetic exchange relaxation. The control impact of electric field and electric current on the magnetic states occurs indirectly via the spin polarization and spin current in combination with the exchange interaction of these polarized spins with localized magnetic states. The corresponding description of the magnetic dynamics is based on the modified Landau-Lifshitz equation and spin diffusion equations, taking into account the spin Hall and the inverse spin Hall effects for systems with normal metal sublayers. In the case of the magnetic nanostructures with the Rashba spin-orbit interaction in interfaces, the electric field-controlled magnetization is realized via the Rashba field-induced spin polarization, and its exchange interaction with localized magnetic states. Corresponding description is based on a tight-binding model of spin-orbit-coupled electrons exchange coupled to the localized magnetic states.</dc:description>
  <dc:subject>Magnetic Nanostructures</dc:subject>
  <dc:subject>Laser-induced Remagnetization</dc:subject>
  <dc:subject>Spin-orbit coupling</dc:subject>
  <dc:subject>Spin Hall Effect</dc:subject>
  <dc:subject>Rashba Spin-orbit Coupling</dc:subject>
  <dc:subject>Electron Field-controlled Magnetization</dc:subject>
  <dc:title>On Guided Remagnetization in Layered Nanoheterostructures</dc:title>
Views 20
Downloads 18
Data volume 17.1 MB
Unique views 19
Unique downloads 17


Cite as