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Abstract— CFRP (carbon fiber reinforced plastic) has replaced 

conventional metallic materials in many industrial applications 

because of its outstanding mechanical performance such as high 

strength to ratio and resistance of fatigue. During the serving life of 

the aerospace composite component, delamination left without 

detection can cause a sudden breakdown of the structure. Eddy 

current pulse-compression thermography (ECPuCT) is an emerging 

technique combines traditional ECPT and pulse compression 

techniques. In this work, feature extraction techniques of impulse 

response have been exploited in terms of principal component 

analysis (PCA), kernel principal component analysis (K-PCA) and 

independent component analysis (ICA) Each technique is evaluated 

using SNR as the index to compare the performance. The results 

indicate that Kernel-PCA performs better than PCA and ICA based 

features when dealing with delamination ranged from 

defect#1(0.46mm) to defect#9 (2.30mm). 

Keywords—CFRP; eddy current pulse-compression thermography; 

kernel-PCA; ICA; SNR 

I. INTRODUCTION  

Carbon fiber reinforced plastic as a kind of emerging composite 
material, has been used widely in many industrial applications, 
because of its remarkable performance such as high stiffness and 
low density. Thus, the integrity of CFRP under various loading 
conditions like impact loading is very critical for the structure. 
Delamination is one of the most common defects for CFRP, they 
mostly occur and grow between different layers of CFRP. The 
structure of CFRP with delamination has lower strength and 
stiffness, which may lead to the fragility of the overall structure [1]. 
Under these circumstances, regular quality testing of composite can 
eliminate potential hazards as far as possible [2].  

Numerous Non-destructive testing (NDT) techniques were 
used in the CFRP delamination detection. For instance, the 
ultrasonic testing technique was applied in the detection of 
delamination, but its results are easily distorted by high frequency 
[3]. At present, the main NDT techniques for CFRP are ultrasonic 
testing, X-ray, eddy current, microwave, etc. However, those 
techniques have several drawbacks. Firstly, their systems are huge 
and complicated, such as the device of X-ray is complex, large, 
time-consuming, and the radiation is harmful to the human body, 
so inspectors need extra protection [4]. Secondly, low detection 
depth makes it is hard to find deep defects, such as laser speckle 
method is only suitable for detection of subsurface defects because 
of its detection based on the difference of sample deformation and 
the change of temperature field [5]. Thirdly, it is challenging to 
realize NDT for those methods, such as traditional ultrasonic 
detection. Fourthly, those methods cannot effectively suppress the 
influence of noise, which leads to low sensitivity and resolution of 
detection [3]. 

Active Thermography (AT) was proposed to detect 
delamination in CFRP, it makes up for the shortcomings of 
previous traditional NDT techniques. AT can achieve a large range 
of one-time detection, but also can be applied in various practical 
situations such as material characterization [6], structure 
monitoring. In AT, the thermal contrast is achieved through 
different external heating sources. Optical sources is a most 
common physical source [7], they generate heat on the sample 
surface and heat diffuses into the sample for thermal equilibrium. 
However, optically stimulated thermography (QST) or flush 
thermography may not suitable for detecting in-depth damage, 
closed cracks at the early stages [8].  Ultrasonic stimulated 
thermography (UST) is an alternative means of thermography that 
is mainly used for the inspection of micro-cracks in aluminium 
aerospace components  [9] and composite primary and secondary 
structures [8]. The delamination detection of UST often suffered 
from problems of multi-layer and heterogeneous structures. 

ECPT is an emerging NDT technique, it performs effectively 
than conventional NDT technique in the detection of CFRP defects 
[10]. Besides, it has higher detection efficiency and in-depth 
capability, higher resolution than traditional eddy current because 
of the combination of multi-physics nature which combines Joule 
heating and heat diffusion[11]. In ECPT system, a coil carried with 
high-frequency alternating current is used to excite eddy current 
inside the sample. The abnormal structure of surface and 
subsurface will change the distribution density of the eddy current, 
which leads to the irregularity of the thermal distribution observed 
by the infrared camera [12]. In previous works, the application of 
ECPT has been studied for detection and quantities of fatigue 
cracks, corrosion, and loading impact [13]. Since CFRP exhibits 
low electrical conductivity, the process can be considered 
volumetric heating because the skin depth of eddy-current is 
greater than the thickness of CFRP sample in most of the ECPT 
cases [14]. Therefore, the surface conditions of CFRP sample affect 
the results of ECPT. Besides, the complex structure of CFRP, such 
as multi-layer structure, anisotropic conductivity and different fibre 
orientation, leads to non-uniform thermal distribution. Based on 
those reasons, faithful quantitative evaluation of the delamination 
depth from thermal response was obstructed [14].  

To improve the detection capability of ECPT, the combination 
of pulse-compression (PuC) techniques and eddy current excitation 
was proposed as ECPuCT in recent works [8,14]. It has been 
proven that PuC technique applied with AT ameliorates attainable 
Signal-to-Noise Ratio (SNR) even under low-power heat sources 
[15, 16]. At present works, ECPuCT can be successfully used in 
the detection and quantitative evaluation of delamination located in 
CFRP [14]. The ECPuCT applies a modulated current waveform to 
excite eddy current, the matched-filter is applied pixel-wise on time 



trends to retrieve the impulse response of the sample as 
thermograms [14, 17].  

Apart from the improvement of detectability of defects beyond 

the skin depth based on the ECPuCT method, feature extraction 

methods were applied in this work, which is critical for quantitative 

evaluation of defect depth. The features for ECPuCT system are 

presented by thermal distribution in thermal sequences and 

transient responses in time domain. For thermal sequences 

extraction, the main goal is to define the location of defect based 

on thermal images. Principal component analysis (PCA) was 

applied by transform the raw data into orthogonal principal 

component subspace, which also reduces the dimension of data 

[18]. Independent component analysis (ICA) was proposed to 

identify the significant ICs in the mixing observation model [19]. 

Single-channel blind source separation was proposed in [20], it 

enables spatial and time patterns to be extracted based on transient 

thermal response behaviour. Thermal transient response features 

have been applied to indicate the status of defect. Fourier transform 

was used for pulse thermography (PT), it has been proven that the 

non-uniform heating and surface emissivity variation was removed 

based on this method [21]. Wavelet transform was proposed which 

has the potential of automatically selecting both optimal transient 

frame and spatial scale for defect localization with ECPT system 

[22].  

Since the distribution of the thermal transient response is 

Gaussian distribution, kernel function was introduced in PCA in 

previous work. Traditional PCA always find principal linear 

components to represent the data in lower dimension. For data with 

non-linear distribution, PCA will fail to find right representative 

direction. Kernel-PCA rectifies this limitation [14]. For the same 

reason, kernel-ICA was applied in this work for comparison of the 

performance of those feature extraction methods.  

 

 
 

Figure 1 Systematic diagram 

 

Figure 1 shows the block diagram of overall work based on the 

ECPuCT system. In the first stage, ECPuCT method was first 

applied to the CFRP sample with manual delamination located at 

different depth. Then the raw data, presented as thermal sequences, 

processed with denoising algorithm in order to remove noise. In the 

third stage, five different feature extraction algorithms exploited to 

localize the delamination defect and enhance the delamination area. 

Based on the results of feature extraction, SNR between defective 

area and non-defective area was exploited to compare the 

performance of those methods. SNR reflects the accuracy of feature 

extraction; SNR value curves reflect the performance of feature 

extraction method when dealing with different depth defects. If the 

SNR curve decreases slowly and keeps a stable value, the method 

is more reliable. Combined with physical meaning, the valuation of 

feature extraction methods is precise.   

This paper is organized as follows: Section II introduces the 

theoretical background of ECPuCT system and feature extraction 

algorithms proposed. Section III presents details about the Backer 

code excitation, ECPuCT experimental setup, and the dedicated 

CFRP sample. Section IV discusses the results of feature extraction 

combined with physical meaning, and SNR comparison of their 

performance. The crossing-point feature validation of delamination 

depth also presented in this section. The conclusion will be made 

in section V. 

II. PROPOSED METHODOLOGY 

A. Pulse-compression theory 

Pulse compression infrared thermography testing is a 

burgeoning technique  that has been used widely in the 

experimental estimation of impulse response based on Linear 

Time Invariant (LTI) system, it is suitable for noisy experimental 

environment or experiment results with low SNR value [23]. The 

combination of pulse compression technology and infrared 

thermal imaging nondestructive testing technology can effectively 

improve the signal-to-noise ratio and thermal contrast of the 

results and enhance the detection effect. In standard ECPuCT 

system, heating time is significantly shorter than cooling time. 

Therefore, the so-provided heating stimulus can be modeled as a 

Dirac’s Delta function δ(𝑡), and the corresponding output y(𝑡). 

The temperature response curve of each pixel in the collected data 

is consistent with the pulse thermal imaging mode. The defect 

information can be determined by analyzing the data of the heating 

stage and the cooling stage [24]. Features are obtained by 

analyzing the h(𝑡) within a chosen range of interest 𝑇ℎ as showed 

in Figure 2(a). In previous works, assuming the pulse heating time 

is  𝑇ℎ , then the total time interval is 𝑇 + 𝑇ℎ  [24, 25]. After 

obtaining the coded excitation data, the output obtained by 

convoluting the matched filter related to the data and the coded 

signal is the output of ECPuCT system [26]. 

 The basic theory of the PuC technique is presented in Figure 

2(b). Given a coded excitation s(𝑡)  of duration 𝑇  and the 

bandwidth 𝐵, and another signal ψ(t), the so-called matched filter, 

such that their convolution “*” approximates the Dirac’s Delta 

function δ(𝑡) as:  

s(t) ∗ ψ(t) = 𝛿(𝑡) ≈ δ(𝑡) (1) 

 

In Eq. (1), an estimate ℎ̃(𝑡)  of the ℎ(𝑡)  is obtained by 

convolving the recorded output signal y(t) with the matched filter 

ψ(𝑡), the impulse response can be obtained as: 
 

ℎ̃(𝑡) = y(𝑡) ∗ ψ(t) = ℎ(𝑡) ∗ 𝑠(𝑡) ∗ 𝜓(𝑡) + 𝑒(𝑡) ∗ ψ(t)

= ℎ(𝑡) ∗ 𝛿(𝑡) + �̃�(𝑡) ≈ ℎ(𝑡) + �̃�(𝑡)       (2)
 

 

In Eq. (2), 𝑠(𝑡) ∗ 𝜓(𝑡)  equals to the 𝛿(𝑡) . One of the 

advantages of PuC is the impulse response can be estimated by 

delivering energy to the system in a long time in lower peak power 

compared to PT, hence it avoids possible thermal shocks in  fragile 

materials and allowing the use of relatively-cheap heating source 



such as commercial LED chips. In this way, it is possible to 

provide more energy, and hence to increase the SNR and 

detectability of eddy current thermography system. The SNR gain 

is proportional to the 𝑇 ×  𝐵  product, i.e. it can be enhanced 

almost arbitrarily by increasing either the time duration or the 

bandwidth of the coded waveform. It should also be noted that the 

limited 𝑇 ×  𝐵  product of practically-employed coded signals 

results in an ℎ̃(𝑡) always affected by the so-called “side-lobes”, i.e. 

any local maxima of the ℎ̃(𝑡)  amplitude except the main lobe 

(main peak). This can be improved by a proper choice of the 

matched filter signal 𝜓(𝑡)  [27]. In this paper, s(t)  is a Barker 

Code (BC) of order equal to 13 and the matched filter 𝜓(𝑡) has 

been chosen simply to be the time-reversed sequence of the input 

coded signal s(t) [28]. 

 

 
 

Figure 2 Estimation of impulse response: a) single pulse excitation, b) 

Process of impulse response calculation 

 

B. Image PCA and impulse response PCA  

The temperature distribution of surface varying with the time 
recorded by the IR camera, which is a 3-D thermal image sequence. 
In this instance, different information contained in thermal images 
at different time, then the thermal image sequence is a process of 
temperature distribution changing with time, and the amount of 
data is enormous. It is very inefficient to analyze temperature 
distribution image one by one. So, it is of considerable significance 
to extract the information of image sequence in time domain 
effectively by using a feature extraction algorithm.  

Principal component analysis (PCA) is a classical statistical 
tool. PCA takes aim at optimal set of vector bases to represent the 
relationship between data. In this work, impulse response of each 
image in the thermal sequences regarded as independent variable 
in image PCA. Each extracted PC is a linear combination of the 
original frame. Those PCs form the basis of vector space 
respectively and arranged in order of decreasing variance. 
Therefore, the first several PCs contain the most significant 
information of raw data.  

 

 

Figure 3 Diagram of image based PCA 

 

 
Figure 4 Diagram of impulse response based PCA 

  

Figure 3 presents the process of image PCA. Firstly, to 

facilitate the use of PCA, the original 3-D data converted to a 2-D 

data. Then each column vector of this 2-D matrix represents the 

temperature curve of different positions varying with time. For 

image PCA, the black row represents the thermal response of a 

frame at one time, PCA reduces the dimensionality of data on the 

time axis 𝑁𝑡. Compared to the image PCA, impulse response PCA 

regards the impulse response of each pixel rather than each image 

in the thermal sequences. Each PC extracted from raw data 

represent a linear combination of the original impulse response. 

Figure 4 shows the diagram of impulse response PCA, a column 

of pixels represents the impulse response of single-pixel varying 

with frames (𝑁𝑡).  

According to the theory of ECPT system, the interaction of 

eddy current distribution gradually decreases as the depth of defect 

increases. In the heating stage, the distributions of eddy current are 

independent as each other, which form independent Joule heat 

source. Then the heat inside material is diffused along with fibre 

orientations. Therefore, the heat of each region interacts only with 

its neighbours. In the ECPT system, it is generally assumed that 

the heat distribution on the surface determined by the 

characteristic of electricity, magnetism, heat, etc. In this case, the 

heat distributions of two distant regions are independent of each 

other.  

In practical progress, the surface of the sample continuously 

emits infrared heat radiation, and the IR camera receives the 

thermal radiation at time 𝑡 and records the infrared thermal images 

𝑌(𝑡). Because the thermal images composed of many impulse 



response pixels, these heat distributions have the same trend, 

which is a statistically linear correlation. The observation model 

𝑌(𝑡) expressed as follows: 

 

Y(𝑡) ≈ ∑ 𝑚𝑖𝑋𝑖(𝑡)𝑁𝑠
𝑖=1 (3) 

In Eq.3, 𝑋𝑖(𝑡) represents the set of 𝑁𝑠 patterns, and 𝑁𝑠 is the 

number of non-linear correlated heat distributions, those patterns 

include defective, non-defective and other areas. 𝑚𝑖 denotes the 

mixing parameters that describe the contribution of different 

thermal patterns to the observation output Y(𝑡). To extract 𝑋𝑑(𝑡) 

that describes the defective area impulse response, kernel-PCA is 

applied in this work.  

Based on the description of the observation model, Y(𝑡) can be 

expressed as a combination of every pixel’s impulse response: 

Y(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡), 𝑋3(𝑡), ⋯ , 𝑋𝑁𝑥×𝑁𝑦
(𝑡)] (4) 

To introduce the kernel function, the impulse response is 

projected to the kernel space ɸ, then the kernel matrix K(i, j) 

obtained as follows: 

1

𝑁𝑥 ∙ 𝑁𝑦

∑

(ɸ(X(t) −
1

𝑁𝑥 ∙ 𝑁𝑦

∑ ɸ(X(t)

𝑁𝑥×𝑁𝑦

𝑗=1

)

(ɸ(X(t) −
1

𝑁𝑥 ∙ 𝑁𝑦

∑ ɸ(X(t)

𝑁𝑥×𝑁𝑦

𝑗=1

)𝑇

𝑁𝑥×𝑁𝑦

𝑖=1

(5) 

 

In Eq.5, the Gaussian kernel function defined as: 

 

ɸ(𝑋(𝑡)) = 𝑒𝑥𝑝 (−
‖𝜙(𝑋(𝑡)) × 𝜙(𝑋(𝑡))

𝑇
‖

2

2𝜎2
) (6) 

Then the kernel matrix K(𝑖, 𝑗)  named as K for simple, the 

eigenvectors α of kernel matrix can be obtained as: 

𝜆𝑖𝛼𝑖 = 𝐾𝛼𝑖 (7) 

Based on the obtained eigenvectors 𝛼𝑖 , then the enhanced 

thermal pattern can be projected as: 

𝑋𝑑(𝑡) = [𝛼1, 𝛼2, ⋯ 𝛼𝑇]𝑌(𝑡)𝑇 (8) 

 

 
Figure 5 Diagram of K-PCA 

 

The diagram of K-PCA presented in Figure 5, K-PCA maps 

the impulse response of single-pixel varying with frames (𝑁𝑡) into 

Gaussian space, eigenvectors corresponding to the largest top ten 

eigenvalues selected for projection. Compared to the traditional 

PCA, this method processes the impulse response of each pixel 

rather than each image in the thermal video as an independent 

variable [29]. 

Although PCA focus on several principle components contains 

the thermal response, aliasing of thermal response from different 

regions blurred the physical meaning of the PCs, it is hard to 

explain those components.  Because the thermal response from 

different regions is independent of each other, ICA can be applied 

in feature extraction for separation of heat distribution from 

different regions as far as possible. PCA is to maximize the 

variance, so that the residual variance is minimized, or information 

loss is minimal (variance is information), but ICA maximizes 

independence, making the joint probability closest to the 

component probability product [30,31]. 

Thermal response signal separation based on independent 

component analysis is a process of constantly searching for the 

best linear transformation [32,33]. The best linear transformation 

matrix finally obtained is Ŵ𝐼𝐶𝐴 , it not only does the estimated 

aliasing thermal response be as independent as possible, but it also 

ensures that each individual component reflects a data trend. It can 

be expressed as follows: 

Ŵ𝐼𝐶𝐴 = arg max
𝑤

∏ Pr(𝑌′′(𝑡)|𝑊)

𝑡

= arg max
𝑤

∏ ∏ Pr(𝑋𝑖
′′(𝑡))

𝑖𝑡

(9)
 

In this formula, Pr (∙) represents probability density. Based on 

the same thermal response model (Eq.3), the diagram of ICA 

showed in Figure 6. 

 

 
 

Figure 6 Diagram of ICA 

 

In this diagram, the observation model for ICA is 

𝑌′′(𝑡). 𝑚𝑖 , (𝑖 = 1,2,3 ⋯ 𝑁𝑠) , it represents thermography image 

captured by the IR camera, which is considered as a mixing 

observation. And 𝑋′′(𝑡) represents the independent signal source, 

it produced by position 𝑖  at time 𝑡  with dimensional 𝑁𝑠  by 𝑁𝑦 

respectively. The relationship between them described in Eq.12.  

According to [34], Ŵ𝐼𝐶𝐴  can be solved with singular value 

decomposition. Firstly, PCA applied in whiten for 𝑌′′(𝑡), then 

SVD (Single value decomposition) applied, the derivation process 

described as follows: 

 

𝑋′′(𝑡) = [𝑣𝑒𝑐(𝑋1(𝑡)), 𝑣𝑒𝑐(𝑋2(𝑡)), ⋯ 𝑣𝑒𝑐 (𝑋𝑁𝑠
(𝑡))]

𝑇
(10) 

 



𝑌′′(𝑡) =

[𝑣𝑒𝑐(𝑌(𝑡)), 𝑣𝑒𝑐(𝑌(𝑡 + 1)), ⋯ 𝑣𝑒𝑐(𝑌(𝑡 + 𝑆 − 1))]
𝑇

(11)
 

 

𝑌′′(𝑡) = 𝑀𝑖𝑋
′′(𝑡) (12) 

 

𝑀𝑖 = [𝑚1, ⋯ 𝑚𝑠] (13) 

 

𝑀1
−1 = 𝑊 (14) 

 

𝑌′′(𝑡)𝑁𝑥𝑦 = 𝑈𝑁𝑥𝑦×𝑁𝑥𝑦
× 𝐷𝑁𝑥𝑦×𝑁 × 𝑉𝑁×𝑁

𝑁𝑥𝑦 (15) 

  

 In those formula, S represents the amount of  𝑁𝑥𝑦 represents 

𝑁𝑥 × 𝑁𝑦 , 𝑈𝑁𝑥𝑦×𝑁𝑥𝑦
, 𝑉𝑁𝑥𝑦×𝑁  are the orthogonal matrices, and  

𝐷𝑁𝑥𝑦×𝑁  contains single values. In the second stage, the 

independent basis vectors must be derived by employing the ICA 

algorithm.  

 

U𝑁𝑥𝑦×𝑁𝑠

𝑁𝑥𝑦 = 𝑀𝑁𝑠×𝑁𝑠
𝑋𝐼𝐶𝐴

′ (𝑡) (16) 

  

 In Eq.16, because of possible dimension reduction, e.g., 

choosing 𝑁𝑠  ( 𝑁𝑠 ≤ 𝑁 ) number of basis vectors informative 

subspace of input.  𝑈𝑁𝑥𝑦×𝑁𝑠
 are selected and determined by data 

saved in the nonzero singular values. In the end, Ŵ𝐼𝐶𝐴  can be 

estimated by using a fix point iteration (FAST ICA) method. 

C. Feature extraction comparison  

 

 
 

Figure 7 flowchart of SNR comparison 

 

In this study, SNR value comparison is used to evaluate the 

performance of feature extraction algorithms from data [35]. This 

method is suitable to compare the performance of extraction 

algorithms in dealing with different depth defects. The value of 

SNR reflects the contrast between the defective area and the non-

defective area, which proves which algorithms are outstanding. 

Considering that different pixel responses are interfered by noise 

in difference, manual selection of 2 × 3 pixels region contrasted 

with the sounding area. The calculation operated by the following 

formula: 

SNR(𝑡) = |
ℎ𝐷(𝑡) − ℎ̅𝐷(𝑡)

𝜎ℎ(𝑡)
| (17) 

 

In Eq.17, ℎ𝐷(𝑡)  is the impulse response of defected area 

averaged over a manual selection region, ℎ̅𝐷(𝑡)  is the impulse 

response averaged over whole thermal image and 𝜎ℎ(𝑡)  is the 

standard deviation of the manual selection region same as ℎ𝐷(𝑡). 

 

III. EXPERIMENT SETUP  

A. Eddy current pulse compression thermography setup 

 
 

Figure 8 ECPuCT system 

 

The system of ECPuCT that showed in Figure 8 mainly 

composed of a signal generator, induction heating device, 

excitation coil, IR camera, cooling device and PC. The signal 

generator sends excitation signal to the induction coil, and a 

trigger signal sent to the IR camera to record thermograms at 

50FPS at the same time. The induction heating unit is Cheltenham 

EasyHeat 224, which has a maximum excitation power and current 

value of 2.40 kW and 400 A, respectively, and a tuneable carrier 

in the 150-400 kHz range. The water-cooling device is used to cool 

the excited coil while the coil is held 3.00mm from the sample 

surface to ensure that the heating of the sample is volumetric 

heating.  

The excitation coil uses a high conductivity copper hollow 

control with a diameter of 6.35mm as a rectangular coil. The 

thermal imaging camera uses FLIR's SC7500, the thermal imager 

has an InSB infrared detector with a sensitive wavelength of 3-5 

μm , a measurement accuracy of ±1℃ , a noise equivalent 

temperature difference of less than 20mK, and a resolution of 2. 

 

 



B. Dedicated sample of CFRP 

 
 

Figure 9 Plan view a) and cross-section view b) 

 

Figure 9 shows the structure of CFRP, the dedicated sample 

contains twelve piles of carbon fiber fabric, the areal density is 0.2 

g/𝑚𝑚3 and the fiber orientation are 0° or 90°. The lateral length 

is 200mm，and the width is 240mm, the total thickness of the 

sample is 2.80mm. The artificial delamination defects realized by 

inserting thin square pieces of Teflon tape. Each layer is 0.23 mm. 

The shallowest defect is #1 and is placed at a depth 0.46mm from 

the surface, the most buried defect is #9, and it placed at the depth 

2.30mm.  

 

IV. RESULTS AND DISCUSSION 

A. Image PCA 

As explained in section II, the image PCA algorithm is applied 

to extract the delamination feature and enhance the patterns. Figure 

10 shows the extracted thermal patterns from original thermal 

sequences because carbon fibres of the sample are conductive and 

anisotropic; The heat produced from eddy current transfers along 

the direction of carbon fibres. The temperature distribution of 

carbon fibre structure in the defective area is abnormal, and the 

temperature is higher than that of carbon fibre structure in the 

defective region. When the delamination occurs in the carbon fibre 

structure, the eddy current generated will be hindered by the defects, 

which is equivalent to the resistance enhancement at this position. 

Delamination will affect the distribution of the transverse eddy 

current field. If the eddy current cannot flow directly through the 

layered position, it will bypass, which makes the delamination 

unable to obtain the eddy heat. 

In this work, 300 frames from the 650th frame to the 949th 

frame as the feature extraction data, which covers the heating and 

cooling stage and ensures the validity of the data to the greatest 

extent. Every row from left to right PC1, PC2, PC3, PC4 

respectively, which in turn represent the optimal 4 PCs. 

 

The first pattern is the heating pattern that contains most 

information of frames, it also contains a fuzzy effect caused by 

transverse heat transfer, so the distribution of temperature 

information is vague. The second pattern clearly shows that the 

regular distribution of carbon fibre texture in the defective area 

without a fuzzy effect, which forms a sharp contrast to the carbon 

fibre structure is the defective area. Based on the second pattern, 

the location of the delamination can be determined. The third 

pattern shows the apparent shape of delamination as expected 

because it contains the essential defect information. However, it 

has a lower contrast between sounding area and defective area, 

which leads to the vague when the depth of defect becomes deeper 

such as #defect6 PC3. 

For image PCA, the 4th pattern contains the least thermal 

information compared to others, so it cannot give useful 

information about the defect. Besides, for more profound defect, 

the quality of patterns become obscure, which is the reason for the 

introduction of impulse response PCA. 

 

Figure 10 Results of image PCA from D1 to D6 



B. Impulse response PCA 

 
Compared with image PCA, impulse response PCA has the 

advantage of feature extraction for the thermal response of each 
pixel, the results showed in Figure 11. For the first pattern, it is 
composed of plenty of thermal response information, which is 
reconstructed from thermal responses of pixels corresponding to 
the eigenvectors with the most information. There is the same 
problem as image PCA of PC1s, fuzzy effect leads to the image 
blurring so that insufficient defect information cannot be obtained.  
In addition, the sensitivity of PC1s is dramatically reduced when 
dealing with deeper defect, which of reason is 1st pattern might be 
cover by the heating information. 2nd pattern and 3rd pattern 
obtained from the second-largest eigenvector and the third-largest 
eigenvector; they have different contrast that marked in Figure 12. 

 

The 2nd pattern shows the delamination in lower contrast while 
the 3rd pattern shows it in higher contrast, the reason is their 
corresponding eigenvectors are supposed to be orthogonal with 
each other. In that case, combining these two images makes it 
easier to determine the location, shape and size of delamination. 
Since the electric and thermal conductivity transfers along the fiber 
orientation based on sample structure, which makes the edges of 
delamination hotter than region of delamination. Thus, the edge has 

a large contrast in 1st pattern. Based on the Eq.1, the SNR of 
defective area heavily reduced after defect 3, the shape of 
delamination cannot be identified in patterns. 

C. Kernel PCA 

When dealing with deeper defects, the quality of thermal 

patterns is worse based on traditional PCA. To enhance the 

patterns, kernel-PCA method is applied to extract the thermal 

feature. According to section II, Kernel-PCA considers the 

impulse response of a single pixel as an independent variable, 

which makes the PC extracted is a linear combination of impulse 

responses that form the vector space respectively and arranged in 

order of variance reduction. Figure 13 shows the results of K-PCA. 
 

 

 
Figure 14 Comparisons of defect#1 and defect#9 

 

In Figure 14, patterns after 4th show the edges of delamination 

because the eigenvectors corresponding to the first few PCs 

contain too much heat information. In addition, the kernel-PCA 

cannot arrange order of eigenvectors before projection, thus the 

patterns arranged as random. Another improvement of K-PCA is 

noise immunity when dealing with deepest defect#9, the edges of 

delamination presented in the second pattern. 

 

Figure 11 Results of impulse response PCA 

Figure 12 Contrast comparison of PC2 and PC3 

Figure 13 Results of K-PCA 



D. ICA and kernel ICA 

Independent component analysis was applied in this work to 

extract the features and separate the thermal distribution from 

different regions. The results showed in Figure 16. 

 

 
Because ICA considers the separation of thermal distribution of 

impulse responses, thermal response along the fiber orientations 
preserved in patterns. For the same reason, the contrast of the 
second patterns and third patterns increases based on the ICA 
method. In the first patterns reconstructed by the first independent 
components, non-uniform heating along the coil can be eliminated. 
While in 4th patterns reconstructed by the fourth independent 
component, the edges and location of delamination can be found. 
Based on the patters of defect#1 to defect#6, the contrast between 
defective and non-defective regions is obviously higher than that 
of PCA methods. Therefore, the ICA based on image construction 
method can be used to reduce the effect of non-uniform heating, 
enhance the delamination detectability, and separate the thermal 
responses. 

The preponderance of the ICA algorithm embodies in dealing 
with deep defect such as defect#9, the results of defect#9 showed 
in Figure 15. Most of those patterns can show the contrast of 
delamination region and non-defective area, which is better than 
the results of PCA provide before. However, there is a fly in the 
ointment that the edges of delamination can be present in most of 
those patterns. To tackle this challenge, ICA combined with the 
kernel function proposed in the work. Because the distribution of 
impulse responses corresponding to the Gaussian distribution, 
Gaussian kernel introduced in the work. The results showed in 
Figure 17. 

 

 

 

 

 

 

Combining with mesh figure of the second pattern of defect#1 

based on PCA and K-ICA, ICA with kernel function is 

significantly to improve the contrast between defective and non-

defective regions. Although the texture of carbon fibre showed 

clearly than other methods mentioned before, the edges of 

delamination are not shown in patterns. 

 

 
 

Figure 17 Results of kernel ICA 

 
 After comparison experiments, the patterns corresponding to 

the first ten independent components affected by the fuzzy effect 
and heating information. Because Kernel-ICA separates most of 
the thermal responses come from heating information and 
background noise, so the range of independent components should 

Figure 16 Results of ICA 

Figure 15 Patterns of defect#9 based on ICA 

Figure 18 Mesh figure comparison of PCA and K-ICA 



be expanded approximately. In this work, the first twenty 
independent components are selected, and the delamination is 
concentrated from 13th frame to 15th frame. In additional, K-PCA 
also performs better than ICA extracting deeper defect feature.  

 This section discussed the results of the feature extraction. In 
terms of pattern quality, the quality of K-PCA presents more of the 
edges of delamination, and the results of ICA show more contrast 
between the defective area and the non-defective area. Both of PCA 
and ICA, they do not need to make a specific assumption of the 
source signal, the PCA considers that the most of useful 
information for a random signal included in the variance, the ICA 
aims at the separation of independent components composed 
thermal information and defect information. Therefore, their results 
highlight different details. In order to compare the advantages and 
disadvantages of these methods, the next section presents the 
comparison of SNR value to evaluate their performance.  

E. Features comparison 

 

 

 
 

Figure 19 SNR comparison of image based PCA and impulse response 

based PCA 

 

In  

Figure , the SNR of image PCA is linear and monotonic 

decline, which is accorded with the theory of image PCA. Despite 

some errors and noise effects, the SNR of the defects 

corresponding to the six principal components decreases with the 

increase of depth. Because impulse response PCA focus on the 

instantaneous thermal response of a single pixel, the data are 

distributed nonlinearly. The decline rate of impulse response PCA 

is obviously slower than that of image PCA when dealing with 

deep defects. Therefore, impulse response PCA is more reliable 

than image PCA method.  

 

 

In Figure 20, the SNR of K-PCA declines rapidly between 

defect#1 and defec#2, which indicates that the heating information 

contained in the principal component is reduced heavily. After the 

second point, the decrease of information corresponding to the 

principal component becomes gentle, most of SNRs are 

concentrated in the range from 0 to 0.1. The results also prove that 

when the data mapped into Gauss space, the data become 

separable linearly. Therefore, most of the heating information that 

affect detection is filtered out. Combining with the results of K-

PCA, K-PCA performs better than traditional PCA in detecting 

delamination of CFRP in practice. 

 

Figure 20 SNR of K-PCA 

Figure 19 SNR of ICA 



Due to the skin-effect, the eddy current density decayed 

exponentially, which reflected in the SNR curve of ICA. In Figure 

19, there is a slight difference between ICA curve and K-PCA 

curve, which indicates that ICA does not improve image quality. 

According to the ICA theory, ICA capable of the separation of 

independent components and screen out the most differential 

components for image reconstruction. Therefore, the patterns of 

ICA reflect the differences between individual thermal responses, 

but SNR values not improved. 

 

V. CONCLUSION 

In this work, feature extraction techniques of impulse response 

have been exploited in terms of principal component analysis 

(PCA), kernel principal component analysis (K-PCA) and 

independent component analysis (ICA) The conclusion is as 

follows: 

 

1. Traditional PCA has the advantage of simple 

implementation and fast calculation speed. However, the 

limitations of PCA are obvious, such as it can solve the 

linear correlation well, but there is no way for high-order 

correlation.  

2. For data possess high-order correlation, kernel PCA is 

worth considering because the nonlinear correlation is 

converted to linear correlation by kernel function. Since the 

thermal response distribution is consistent with a Gaussian 

distribution, Kernel-PCA with Gaussian kernel adopted in 

this work. However, K-PCA and PCA affected by non-

uniform heating pattern.  

3. Because of the independence and non-correlation between 

thermal responses, ICA was applied in feature extraction. 

Compared with PCA methods, ICA performs better when 

dealing with deep defect.  

 

According to the properties of SNR curve, the performance of 

K-PCA is the most stable and corresponds to the corresponding 

physical phenomena. Eddy current density exponential decays with 

the depth increases, which corresponds to the SNR curve of K-PCA 

is exponential.   

Based on the drawbacks discussed before, the future work will 

investigate:  

1. Extracting the complex defect feature and evaluating the 

method performance.   

2. The next step is to analyze the lateral diffusion of heat and 

minimize its impact on the experimental results. 
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