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Persistent homology (PH) is a relatively new field in applied mathematics that studies the compo-
nents and shapes of discrete data. In this work, we demonstrate that PH can be used as a universal
framework to identify phases of classical spins on a lattice. This demonstration includes hidden
order such as spin nematic ordering and spin liquids. By converting a small number of spin config-
urations to barcodes we obtain a descriptive picture of configuration space. Using dimensionality
reduction to reduce the barcode space to color space leads to a visualization of the phase diagram.

I. INTRODUCTION

In condensed matter physics we often deal with mate-
rials where collective degrees of freedom such as magneti-
zation, density modulations, coherent condensate forma-
tion, etc. can undergo order to disorder transitions as a
function of external parameters. The distinctly different
orderings of these degrees of freedom constitute different
phases of the system, characterized by observables known
as order parameters.

In the Landau theory of phase transitions, the tran-
sition between phases involves the breaking of a sym-
metry of the system. A classical example is the break-
ing of rotational symmetry in ferromagnetic materials.
In the paramagnetic (high temperature) phase the spins
are fully disordered and the system has the symmetry of
the crystalline structure. At the onset of ferromagnetic
order (low temperature) the symmetry is reduced. Or-
der parameters reveal key symmetries of the phases and
serve as indicators for the phase transitions where the
condensed matter system undergoes a qualitative change
as a result of change in control parameters such as tem-
perature, pressure, and electromagnetic fields. Conven-
tionally, in the Landau theory, these order parameters
are constructed by hand.

In the presence of frustration between atomic spins,
magnetic materials feature rich phase diagrams with dif-
ferent forms of collinear and noncollinear antiferromag-
netic orderings, as well as more unconventional phases
that lack long range magnetic orderings. At the same
time we know that both the easily identifiable phases,
such as the ferromagnet, and more complicated and not
easily visualized orders, like spin nematic, do describe
strong correlations between spins. Of relevance for the
present work are classical and quantum spin liquids [1–5],
the spin-ice phase [6–8], and nematic ordering that in-
volves breaking of spin rotational symmetry while in the
absence of magnetic ordering [7, 9–12]. The spin nematic
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ordering is an example of a hidden order parameter which
can be difficult to observe directly in an experiment, but
that still reveals itself in the heat capacity signature and
other observables at the phase transition into nematic
state [4, 13].

The commonly used indicators of phase transitions are
heat capacity, susceptibility of the relevant order pa-
rameter(s), and derived quantities such as the reduced
fourth-order Binder cumulant [14]. While a peak in the
heat capacity as a function of temperature can reveal the
presence of a phase transition, it can not alone be used
to characterize the phases. Understanding of the order
parameter with concomitant susceptibility is a required
step.

A new paradigm to investigate phase transitions based
on neural networks recently emerged. It has been shown
that neural networks can classify spin configurations sam-
pled from a Monte Carlo simulation and thus can func-
tion as order parameter identifiers [15, 16]. The neural
network is trained in a supervised fashion, i.e. it is given
labeled microstates, where the labels are determined by
a known conventional order parameter. Intriguingly, re-
cent work has shown that it is also possible to identify
phases without prior information of the phase diagram,
including phases without conventional order parameters
[17–19].

In this work, we use a qualitatively different approach
to automatically construct order parameters, based on a
persistent homology (PH), a recently developed field in
applied mathematics. In this approach the objective is
to identify components and shapes given discrete data
and a distance metric. These features are captured in a
persistence diagram or barcode, two different graphical
representations of the same information. Roughly speak-
ing, these diagrams show at what scale different features
are present in the data, and over what range of scale they
persist.

PH is used in many fields including image processing
[20], complex networks [21] and natural language process-
ing [22]. However, it has not seen much use in condensed
matter yet. In cosmology, it has been applied to study
the cosmic web and its structure [23]. In materials sci-
ence, it is used to study nanoporous materials [24] and
other larger structures such as silica glass and polymers
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[25, 26]. A recent work proposes persistent homology ob-
servables to study dynamics of a quantum many-body
system, using the two-dimensional Bose gas as an exam-
ple [27]. There are three works that discuss the appli-
cation of persistent homology for the detection of phase
transitions. Firstly, Donato et al. [28] study the mean-
field XY model and a classical Φ4 model. The phase
transitions are detected by computing the persistent ho-
mology of the configuration space with molecular dynam-
ics simulations. Secondly, the recent work by Tran et al.
[29] demonstrates the detection of phase transitions in
the classical XY model and in quantum models. Thirdly,
while this manuscript was under review we learned of
related work by Cole et al. [30], where the phase transi-
tion in a number of two-dimensional lattice spin models
is detected.

We demonstrate how PH provides an unsupervised
method for constructing phase diagrams, capturing both
conventional and unconvential phases with a single
framework. Each microstate is converted into a per-
sistence diagram (or barcode), after which two different
microstates can be compared with a a similarity metric
on their corresponding persistence diagram. Defining a
similarity metric (or kernel) for persistence diagrams is
still an open problem and we examine the capability of
a sliced Wasserstein distance for spin models. This pro-
vides a unbiased way to construct a phase diagram.

The paper is organized as follows. We introduce persis-
tent homology as an order parameter in Sec. II, describe
our method to construct phase diagrams in Sec. III and
the XXZ model on pyrochlore lattice in Sec. IV. The
results from the application of persistent homology to
the XXZ model are presented in Sec. V followed by a
discussion in Sec. VI and conclusion in Sec. VII.

II. PERSISTENT HOMOLOGY AS AN ORDER
PARAMETER

Persistent homology (PH) is a method that identi-
fies the qualitative features of a finite metric space (also
called a point-cloud dataset) – for an introduction see
[31, 32]. Given a finite metric space and a distance
parameter r, the point-cloud is converted into a graph
where edges are added between vertices with distance
smaller than r. A simplicial complex K1 is built from
the graph, and the homology of K1 can be computed ef-
ficiently by linear algebra. Performing this construction
for increasing r yields a sequence of nested subcomplexes,

K1 ⊂ K2 ⊂ · · · ⊂ Kl = K, (1)

where the sequence K is called a filtered simplicial com-
plex. The computed homology group Hk(Ki) identifies
k-dimensional holes in the simplicial complex. For exam-
ple, k = 0 relates to connected components (clusters) and
k = 1 to 1-dimensional holes and so on. The rank of Hk

counts the number of k-dimensional holes, also referred to
as the Betti number βk. The persistence (or lifetime) of

k-dimensional holes over the distance parameter r is visu-
alized as a barcode, persistence diagram (PD), or lifetime
diagram, all of which represent the same information.

Common types of complexes are the Vietoris-Rips
(VR), Čech and Alpha complex [31, 32]. The complexes
differ in number of simplices, affecting the computational
complexity. We examine the capability of Alpha complex
(also α-complex) that is often used when the input data
is 2D or 3D, in our case spins on a 3D lattice. The α-
complex is equivalent to the Čech complex when studying
persistent homology, but it contains fewer simplices.

The α-complex is constructed from a Delaunay trian-
gulation on the input point-cloud dataset [33]. For a
3-dimensional point cloud, the highest dimensional sim-
plex is the 3-simplex (i.e. tetrahedron). Due to the in-
put space being 3-dimensional, there are three homology
groups of interest: H0, H1 and H2.

With this brief introduction we now move to outline
how we apply PH to spin models. The spin configu-
rations (microstates) from classical Monte Carlo simula-
tions form a metric space in multiple ways. Firstly, a sin-
gle spin configuration can be considered a point in state
space (e.g. discrete in the case of an Ising model, con-
tinuous in case of a Heisenberg model). Given a distance
metric between two states, the corresponding persistence
diagram (PD) is describing the topology of the phase di-
agram, where the homology groups describe the shapes
of the phases in parameter space. Secondly, a single site
in the spin system can be considered a point, leading to
a single PD per microstate. A phase diagram can be
constructed by comparing PDs.

In this work, we focus on the latter concept, i.e. the
homology groups describe a microstate (spin configura-
tion) directly. Averaging over microstates is possible by
simply merging barcodes and discarding the the infor-
mation from which microstate each bar (or point in PD)
originated.

The concept introduced above requires a distance met-
ric between two sites, where we can use the information of
the lattice and the spin. The symmetry of the barcode is
dictated by the choice of distance metric and determines
its capability of capturing distinct phases.

As a simple example, consider the ferromagnetic
square lattice Ising model (J = 1) hosting a low-
temperature symmetry-breaking ferromagnetic phase
and a phase transition at Tc ≈ 2.269 J to a paramagnetic
phase [34]. Choose a distance parameter r where aligned
spins are closer than opposite spins, with the distance
being an Euclidean distance between spin tops. This
definition of a distance metric leads to domains forming
connected components in homology group H0. Hence
the Betti number β0(r) counts the number of domains
present in the spin configuration, similar to the conven-
tional order parameter of magnetization density 〈M〉. In
general, any metric capturing the shapes present in the
spin texture is able to identify the two phases.

The phase diagram of a 2D Ising model discussed above
is a convenient example, but the phase diagram is too
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simple to benefit from an approach with PH. In this work
we study a more complex system, namely the XXZ model
on a pyrochlore lattice, known to host a large number of
competing phases [4].

III. PHASE DIAGRAM CONSTRUCTION

Traditionally, phase diagrams are constructed by ob-
serving a change in the order parameter that typically
ranges from zero (phase A) to finite (phase B). In our
proposed scheme, shown schematically in Fig. 1, the
persistence diagram (PD) plays the role of the order pa-
rameter, and therefore we need to quantify the change in
the PD.

Common distance metrics for PDs are the bottleneck
distance and the Wasserstein distance [35]. Both es-
sentially measure the similarity by attempting to match
the points (i.e. persistent features) in the two diagrams.
These metrics are too computationally expensive for our
purposes. Instead, we use the sliced Wasserstein (SW)
distance which is an approximation of the Wasserstein
distance [36]. The distance is measured between two PDs

of same kth homology group, i.e. SW(PDk
i ,PDk

j ). For
the total distance, we consider holes (H1) and voids (H2):

Dij = SW(PD1
i ,PD1

i ) + SW(PD2
i ,PD2

i ) (2)

The distance matrix D is established by calculating the
SW distance between all pairs of system parameters (e.g.
all combinations of interaction J and temperature T ). Fi-
nally, the phase diagram is visualized by dimensionality
reduction on D to a 3-dimensional color space (red, green
and blue). There are obvious drawbacks to this simple
approach such as the non-linearity of color perception,
but we find it sufficient. When distances are small and
more color space is required, it is possible to limit the vi-
sualization to a subregion of the phase diagram, as shown
in Sec. V.

Dimensionality reduction algorithms aim to construct
a low-dimensional image where distances of the original
high-dimensional space are preserved as best as possi-
ble. Principal component analysis (PCA) is a common
method based on matrix factorization, when given a set
of input data points. In our case we only have a distance
matrix D. Therefore PCA cannot be used directly, but
multidimensional scaling (metric MDS) is the equivalent
basic technique in this case [37]. In summary, metric
MDS algorithm is used to reduce the distance matrix D
to three RGB color channels that color-code the different
phases in the phase diagram. Similar phases with small

Classical Monte Carlo Homology groups Persistence diagram (PD)

SW distance Dimensionality reduction Phase diagram

FIG. 1. Summary of phase diagram construction.

SW distances will appear close in color space and are
therefore color-coded with similar colors.

IV. XXZ MODEL ON THE PYROCHLORE
LATTICE

The pyrochlore lattice is a cornerstone in research on
frustrated magnetism, and is having a lead role in exper-
imental and theoretical explorations of spin-ice physics
[1, 4, 6–8]. Motivated by the different chemistry of py-
rochlore materials, a variety of spin Hamiltonians with
long or short ranged interactions on the pyrochlore lat-
tice have been investigated. The XXZ model on a py-
rochlore lattice is a system with short ranged interactions
having a rich phase diagram with competing antiferro-
magnetic, spin-ice, spin-liquid and spin-nematic phases
[4, 6]. This model has also been used previously to test a
machine learning model (support vector machine, SVM)
that identifies phases [17]. The Hamiltonian of the XXZ
model is given by

HXXZ =
∑
〈i,j〉

JzzSi,zSj,z − J±
(
S+
i S
−
j − S

−
i S

+
j

)
, (3)

with S±i = Si,x ± iSi,y and Si = (Si,x, Si,y, Si,z), ‖Si‖ =
1, and has the cubic symmetry of the pyrochlore lattice.
In the following, energies and temperatures are expressed
in terms of the antiferromagnetic Jzz = 1 exchange in-
teraction.

Extensive classical Monte Carlo simulations, field theo-
retical analysis, and spin dynamics simulations by Taille-
fumier et al. [4] have established a J±−T phase diagram
with six phases which here will be briefly recapitulated
(numbering corresponding to [17] and naming to [4]):

I Easy-plane antiferromagnet (AF⊥). Spins lie in the
plane perpendicular to the local z axes. The phase
occurs for large positive value of the ratio J±/Jzz.

II Paramagnetic (PM). No long range spin ordering.
Spins point in random directions with exponential
decay of spin correlations.

III Easy-plane spin liquid (SL⊥) with algebraic spin-
spin correlations, no long range magnetic ordering.

IV Easy-plane spin-nematic (SN⊥) with algebraic spin-
spin correlations, no long range spin dipole ordering.
The rotational U(1) symmetry of the local z axes
is broken by the onset of a higher order multipolar
ordering.

V Spin ice (SI). Each tetrahedron on the lattice has the
”two-in, two-out” spin configuration with the spins
aligned along their local z axis (see Fig. 2 (a)). The
phase has algebraic spin correlations, no long range
spin ordering.
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VI Pseudo-Heisenberg antiferromagnet (pHAF) with al-
gebraic spin correlations distinct from phases III and
V, no long range spin ordering.

In summary, one phase has long range antiferromag-
netic ordering (I AF⊥), one phase is disordered (II PM),
one phase has spin-nematic ordering (IV SN⊥), and three
of the phases (III SL⊥, V SI, and VI pHAF) are classi-
cal spin liquids. Relative to the paramagnetic phase, in
which the system has the symmetries of the pyrochlore
lattice, breaking of symmetry occurs only on entering the
easy-plane antiferromagnetic phase (I AF⊥) or on enter-
ing the easy-plane spin-nematic phase (IV SN⊥), hence
only when crossing in and or out from one of these two
phases does the system go through a phase transition,
with characteristic peak structure in the heat capacity
and order parameter susceptibilities [4]. Transitions into
or from one of the three spin liquid phases constitute a
gradual evolution (crossover) of spin configurations, in-
volving no breaking of symmetry, and lacks sharp peak
structures in the heat capacity. The latter quantity nev-
ertheless contains information that can be used to define
a distinct criteria for where the crossover occurs [4]. The
three classical spin liquid phases can be distinguished by
the different form of algebraic spin correlation reported
for each of the phases [4], correlations that can be mea-
sured in neutron scattering experiments. Rather remark-
ably, the easy-plane spin-nematic phase have the same
algebraic spin correlation as the easy-plane spin liquid
phase, yet the phases differ in the regard that in the lat-
ter the rotational symmetry in the local z axes is broken
by the nematic order parameter.

To test the proposal of PH for detection of the phases,
we use representative spin configurations as an input.
Spin configurations to construct the phase diagram were
sampled within classical Monte Carlo simulations. In the
Metropolis-Hastings algorithm, a spin flip is accepted if
energy E is lowered, otherwise accepted with probability
exp (−β∆E) [38], where β = 1/T is the inverse tem-
perature. The number of sites is given by N = 16L3

with L3 the number of cubic unit cells, each containing
16 sites, with each site having 6 nearest neighbors. The
simulations are carried out with L = 4, i.e. N = 1024
spins. Spin configurations are sampled on a parameter
space grid (T/Jzz, J±/Jzz). Similar to [17], we sample 17
temperatures T/Jzz with logarithmically spaced points
between 101 and 10−3. Exchange interactions J±/Jzz
are sampled with 29 linearly spaced points [−1, 0.4]. Ap-
pendix A lists the details of the implementation and the
open-source code.

V. PERSISTENT HOMOLOGY ON THE XXZ
MODEL

A single spin configuration is converted into a point
cloud by placing a point at each spin tip, where the spin
length is set to 1/4 of the lattice tetrahedron edge length

d = a
2
√
2
. Euclidean distance is used once the point cloud

is established using the distance metric

D(i, j) = r(i, j) +
a

2
√

2

‖Si − Sj‖
4

, (4)

where r(i, j) is the Euclidean distance between two sites.
This corresponds to the distance of tips of the spin arrows
(see Fig. 2). Note that Si is in the global crystal frame,
not in the local frame of Equation 3 (see Appendix A
for coordinate frame conversion). For nearest neighbors,
this means D(i, j) is in the range (d/2, 3d/2).

Figure 2 shows the exact barcode for a single unit cell
in the spin ice (V SI) phase, where spins are set ac-
cording to the ”two-in, two-out” rule. The connected
components (H0) reveal that there are two length scales
present. The smaller length scale (α2 ≤ 0.010) cor-
responds to neighboring spins forming 1-simplices (e.g.
Fig. 2 (a)). The larger length scale (α2 ≥ 0.034) leads
to a single connected component, as shown in Fig. 2 (b).
The 1-dimensional holes (H1) appear at α2 ≥ 0.034 as

H0

H1

0 0.05 0.1 0.15 0.2

α2 [a2]

H2

(a) (c)

(b) (d)

FIG. 2. Barcode for a single unit cell with an exact spin
ice configuration ”two-in, two-out”. The spins are all aligned
to the local z axis and there is no long range order. Shaded
tetrahedrons form crystal lattice. The α-complex at certain
α2 filtration values is displayed. The characteristic features
in H1 and H2 are captured by the Wasserstein distance to
distinguish the spin ice phase from other phases.
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FIG. 3. Phase diagram of the XXZ model on a pyrochlore lat-
tice. Constructed by using dimensionality reduction (MDS)
on the distance matrix of (T/Jzz, J±/Jzz) parameter space
to the (R,G,B) color space. Sliced Wasserstein distance on
homology groups is used. Crossover (transition) boundaries
are drawn with solid (dashed) lines [4].

9 bars. This includes 8 empty triangles (i.e. complex
of 1-simplices rather than a single 2-simplices) and one
large hole (also visible at α2 = 0.05, Fig. 2 (b)). The
empty triangles are filled at α2 = 0.037 and become 2-
simplices, shown as shaded triangles in Fig. 2 (b). At
α2 = 0.062, the 1-simplices form a large tetrahedron with
2-simplices at its corners. A tetrahedron of 1-simplices
has β1 = rank(H1) = 3, which corresponds to 3 bars for
H1 in Fig. 2 (c). All 1-dimensional holes are filled at
α2 ≥ 0.131. At this point, a single 2-dimensional void
(H2) appears for α2 = [0.132, 0.168], shown in Fig. 2 (d).

Generally, each phase has persistent features at dif-
ferent characteristic length scales. We sample 32 sta-
tistically independent spin configurations for a sin-
gle (T/Jzz, J±/Jzz) parameter combination. The α-
complexes are calculated by GUDHI [33]. The resulting
barcodes are merged into a single barcode, discarding
the information of the microstate origin from each bar.
The similarity between barcodes is measured by the sliced
Wasserstein (SW) distance, implemented in persim [39],
see Equation 2.

The distance matrix D is dimensionality reduced with
MDS to a 3-dimensional space which is interpreted as
red, green and blue channels. Figure 3 shows the phase
diagram. The paramagnetic phase II PM and the phases
V SI and I AF⊥ are clearly distinct due to large pair-
wise sliced Wasserstein distances. The small distances
between III SL⊥ and IV SN⊥ require a rescaling of the
colormap to be visible, in the separate left pane. Also,
the VI pHAF phase has small SW distances to the para-
magnetic phase and is therefore difficult to detect, but a
small color gradient is present.

Figure 4 shows the lifetime diagrams and confirms that
the phases II PM, III SL⊥, IV SN⊥ and VI SN⊥ are sim-
ilar, leading to smaller SW distances. A more detailed
view of the lifetime diagrams as temperature decreases
is shown in the Appendix Fig. 6. Note that the spin
ice phase V SI exhibits two H1 features (with lifetimes
around 0.07 and 0.1), corresponding to the two longer
H1 bar lengths in Fig. 2. In general, each phase has
its own characteristic features and differences in its fin-
gerprint are captured by the sliced Wasserstein distance.
The qualitative similarities of phases and significant dif-

ferences between lifetime diagrams, I AF vs V SI vs IV
SN⊥ vs III SL⊥ vs VI pHAF phase, leads to the proposal
that these lifetime diagrams can serve as respective order
parameters (i.e. lifetime PH portraits of the phases).

VI. DISCUSSION

The PH method outlined here is using only 32
spin configurations for each point in parameter space
(T/Jzz, J±/Jzz) and does not require data on energies
or heat capacities, making it an efficient technique. The
α-complexes are faster to calculate than the Čech and
Vietoris-Rips complex and capture the holes and voids
created by spins locally ordering. The computational
bottleneck is the calculation of sliced Wasserstein dis-
tances between persistence diagrams. This could be im-
proved by a faster distance metric for persistence dia-
grams, which is still an open problem in persistent ho-
mology. Finally, we note that persistent homology has
very few free parameters in comparison to neural net-
works, which facilitates the interpretation of results.

In comparison to the work by Greitemann et al. [17]
our method has a couple of key differences. Their work
relies on the support vector machine (SVM) and the con-
struction of monomials of spin components. We use per-
sistent homology instead, involving no regression coeffi-
cients, and operate directly on the spin configurations.
For the phase diagram construction, Greitemann et al.
use the Fiedler vector to partition the phase diagram
given a distance matrix D. We instead use the simpler
technique of multidimensional scaling (metric MDS) di-

FIG. 4. Lifetime diagram of the α-complexes constructed
from spin configurations for different phases. The lifetime di-
agram shows the same information as a persistence diagram,
with the diagonal along the x-axis, i.e. lifetime is death -
birth. The corresponding (J±/Jzz,T/Jzz) phase space pa-
rameters are I = (0.4, 0.001), II = (0, 10), III = (−0.8, 0.056),
IV = (−0.8, 0.001), V = (0, 0.001) and VI = (−0.5, 0.001).
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rectly on the distance matrix D.
Recent work has shown that PH can detect phase

transitions in a variety of classical and quantum mod-
els [28, 29]. We show the universality of the approach
by identifying 6 different phases at once, including three
classical spin liquids and construct a full two-dimensional
phase diagram. Even though the phases are detected by
a change in persistent homology, a deeper understand-
ing of the phase (e.g. symmetry breaking condition) is
not immediately clear. However, the barcode reveals the
length scales where patterns are present, which can be a
starting point for a specific theory constructed by hand.

The detection of phases is possible by studying per-
sistence diagrams (Fig. 4) and changes are quantified by
the sliced Wasserstein distance. We reduce the persis-
tence diagrams space to color space with matrix factor-
ization, which proves to work best when SW distances
are large and of similar magnitude. Alternatively, dimen-
sionality reduction based on the neighbor graph approach
(e.g. Uniform Manifold Approximation and Projection,
UMAP [40]) could highlight local structure better at the
expense of representing global structure of the original
high dimensional barcode space.

VII. CONCLUSION

We demonstrate that persistent homology (PH) can be
used to capture different types of order in spin models.
The application of our method to the XXZ model on the
pyrochlore lattice with its six phases demonstrates the
versatility of this approach. Both the phase with long
range order and the phases with only local ordering are
identified.

The barcodes reveal the characteristic length scales
present in the spin model. Using sliced Wasserstein dis-
tance, we obtain a distance matrix for all pairwise system
parameters. The distance matrix can be visualized using
dimensionality reduction, revealing similar regions in pa-
rameter space. Alternatively, the persistence diagrams
can be inspected directly to observe changes as the sys-
tem temperature decreases.

In summary, persistent homology provides a new gen-
eral computational framework to study both long range
and local spin ordering. Extending the persistent homol-
ogy framework to quantum spin models will be the topic
of future work. Moreover, the phase transition of spin
glasses (e.g. in the Edwards–Anderson model [41]) could
also be an interesting test-case for this framework [42].
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Appendix A: XXZ model on pyrochlore lattice implementation

Monte Carlo requires calculating the change in energy when changing spin. The energy change when changing spin
Si → S′i for the XXZ model (see Equation 3) on the pyrochlore lattice is

∆H =
2J±
Jzz

(Sx,i − S′x,i
) 6∑

j

Sj,x +
(
Sy,i − S′y,i

) 6∑
j

Sj,y

− (Sz,i − S′z,i
) 6∑

j

Sj,z. (A1)

Flipping N random spins constitutes a Monte Carlo (MC) step, where N = L3 is the total number of sites.
The parameter space (T/Jzz, J±/Jzz) is sampled in a similar manner as [17]. For each exchange interaction value,

we start by initiating 32 random (paramagnetic) high temperature configurations. After each temperature reduction,
105 MC steps are performed and a single spin configuration is sampled. Therefore, for each parameter combination,
we sample 32 uncorrelated spin configurations, i.e. each spin configuration originates from an independent random
initialization.

The spins in Hamiltonian (Equation 3) are defined in a local coordinate frame, which can be converted into a global
frame,

Si = xlocal
i Sx,i + ylocal

i Sy,i + zlocal
i Sz,i. (A2)

All analysis in this work is done with spins in the global frame.
We implement the Monte Carlo simulation in the Julia programming language. The spin configurations are stored

in the HDF5 format for subsequent analysis. The persistent homology calculations are performed in Python, using
the GUDHI package for alpha complexes and persim for the sliced Wasserstein distance. All the code is available at
https://github.com/bartolsthoorn/PH_XXZ.

FIG. 5. Pyrochlore lattice. Each site has 6 nearest neighbors.
The three values in parenthesis label the unit cell offset of the
neighboring site.

ID Position a
8
· Si ID Position a

8
· Si

1 (1,1,1) 0 9 (3,1,3) 2

2 (5,5,1) 0 10 (3,5,7) 2

3 (5,1,5) 0 11 (7,5,3) 2

4 (1,5,5) 0 12 (7,1,7) 2

5 (1,3,3) 1 13 (3,3,1) 3

6 (5,3,7) 1 14 (3,7,5) 3

7 (5,7,3) 1 15 (7,3,5) 3

8 (1,7,7) 1 16 (7,7,1) 3

TABLE I. Positions of the pyrochlore
lattice.

Appendix B: Lifetime diagrams in phase diagram

Figure 6 shows how the lifetime diagram changes as temperature is decreased. The selected temperature and
exchange parameter are listed at the beginning of each row and column, respectively. Note that a single lifetime
diagram includes 32 sampled spin configurations. For each spin configuration a barcode is produced, and each bar is
treated the same, leading to a single persistence diagram. In other words, diagrams are aggregated by dropping the
information of the origin of each persistent feature.

https://github.com/bartolsthoorn/PH_XXZ
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FIG. 6. Lifetime diagram of the α-complexes constructed from spin configurations at different phase space parameters. At the
lowest temperature T/Jzz = 0.001 (bottom row), persistent features at characteristic length are visible.
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