Conference paper Open Access

Efficiency Improvements for Encrypt-to-Self

Pijnenburg, J.; Poettering, B.

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>Pijnenburg, J.</creatorName>
      <affiliation>Royal Holloway, University of London</affiliation>
      <creatorName>Poettering, B.</creatorName>
      <affiliation>IBM Research</affiliation>
    <title>Efficiency Improvements for Encrypt-to-Self</title>
    <date dateType="Issued">2020-11-13</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3411505.3418438</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Recent work by Pijnenburg and Poettering (ESORICS&amp;rsquo;20) explores the novel cryptographic Encrypt-to-Self primitive that is dedicated to use cases of symmetric encryption where encryptor and decryptor coincide. The primitive is envisioned to be useful whenever a memory-bounded computing device is required to encrypt some data with the aim of temporarily depositing it on an untrusted storage device. While the new primitive protects the confidentiality of payloads as much as classic authenticated encryption primitives would do, it provides considerably better authenticity guarantees: Specifically, while classic solutions would completely fail in a context involving user corruptions, if an encrypt-to-self scheme is used to protect the data, all ciphertexts and messages fully remain unforgeable. To instantiate their encrypt-to-self primitive, Pijnenburg et al. propose a mode of operation of the compression function of a hash function, with a carefully designed encoding function playing the central role in the serialization of the processed message and associated data. In the present work we revisit the design of this encoding function. Without questioning its adequacy for securely accomplishing the encrypt-to-self job, we improve on it from a technical/implementational perspective by proposing modifications that alleviate certain conditions that would inevitably require implementations to disrespect memory alignment restrictions imposed by the word-wise operation of modern CPUs, ultimately leading to performance penalties. Our main contributions are thus to propose an improved encoding function, to explain why it offers better performance, and to prove that it provides as much security as its predecessor. We finally report on our open-source implementation of the encrypt-to-self primitive based on the new encoding function.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/779391/">779391</awardNumber>
      <awardTitle>Future Proofing the Connected World: A Quantum-Resistant Trusted Platform Module</awardTitle>
Views 54
Downloads 48
Data volume 117.1 MB
Unique views 51
Unique downloads 44


Cite as