Conference paper Open Access

Malware vs Anti-Malware Battle - Gotta Evade 'em All!

Chaffey, E.; Sgandurra, D.

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <controlfield tag="005">20201118122707.0</controlfield>
  <controlfield tag="001">4277105</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">28th October 2020</subfield>
    <subfield code="a">IEEE Symposium on Visualization for Cyber Security</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of London</subfield>
    <subfield code="a">Sgandurra, D.</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">11347646</subfield>
    <subfield code="z">md5:96b0b57f656de33bfefb61e3327b7d3a</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-08-29</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-futuretpm-h2020</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of London</subfield>
    <subfield code="a">Chaffey, E.</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Malware vs Anti-Malware Battle - Gotta Evade 'em All!</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-futuretpm-h2020</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">779391</subfield>
    <subfield code="a">Future Proofing the Connected World: A Quantum-Resistant Trusted Platform Module</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The landscape of malware development is ever-changing, creating a constant catch-up contest between the defenders and the adversaries. One of the methodologies that has the potential to pose a significant threat to systems is malware evasion. This is where malware tries to determine whether it is run in a controlled environment, such as a sandbox. Similarly, a malware can also learn how an Anti-Malware System (AMS) decides whether an input program is a malware or in fact benign with the goal of bypassing it. On the other hand, the AMS tries to detect whether a malware sample is performing such evasive checks, e.g. by evaluating the results of Reverse-Turing Test (RTT). This learning process can be viewed as a &amp;lsquo;battle&amp;rsquo; between the AMS and the malware, due to the malware attempting to defeat the AMS, where a successful win for the malware would be to evade detection by the AMS and, conversely, a win for the AMS would be to correctly detect the malware and its evasive actions. We propose a visualisation-based system, called Gotta Evade &amp;lsquo;em All, that allows cyber-security analysts to clearly see the evasive and anti-evasive actions performed by the malware and the AMS during the battle.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4277104</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4277105</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 7070
Downloads 102102
Data volume 1.2 GB1.2 GB
Unique views 6868
Unique downloads 9898


Cite as