Dataset Open Access

Dataset from the EMNLP 2020 article "Modeling the Music Genre Perception across Language-Bound Cultures"

Elena V. Epure; Guillaume Salha; Manuel Moussallam; Romain Hennequin


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/f13dc336-2fde-4422-9306-983a2cba91c8/data.zip"
      }, 
      "checksum": "md5:1840614bfe9c0cb6f3fda0696d22b436", 
      "bucket": "f13dc336-2fde-4422-9306-983a2cba91c8", 
      "key": "data.zip", 
      "type": "zip", 
      "size": 2703892526
    }
  ], 
  "owners": [
    104267
  ], 
  "doi": "10.5281/zenodo.4275315", 
  "stats": {
    "version_unique_downloads": 7.0, 
    "unique_views": 61.0, 
    "views": 68.0, 
    "version_views": 68.0, 
    "unique_downloads": 7.0, 
    "version_unique_views": 61.0, 
    "volume": 21631140208.0, 
    "version_downloads": 8.0, 
    "downloads": 8.0, 
    "version_volume": 21631140208.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4275315", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4275314", 
    "bucket": "https://zenodo.org/api/files/f13dc336-2fde-4422-9306-983a2cba91c8", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4275314.svg", 
    "html": "https://zenodo.org/record/4275315", 
    "latest_html": "https://zenodo.org/record/4275315", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4275315.svg", 
    "latest": "https://zenodo.org/api/records/4275315"
  }, 
  "conceptdoi": "10.5281/zenodo.4275314", 
  "created": "2020-11-16T09:26:56.825990+00:00", 
  "updated": "2020-11-16T12:27:06.889295+00:00", 
  "conceptrecid": "4275314", 
  "revision": 2, 
  "id": 4275315, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4275315", 
    "description": "<p>We release the data required to reproduce the experiments from the article&nbsp;<em>Modeling the Music Genre Perception across Language-Bound Cultures</em>&nbsp;presented at the&nbsp;<a href=\"https://2020.emnlp.org\">EMNLP 2020</a>&nbsp;conference.</p>\n\n<p>More information about this&nbsp;data&nbsp;and how it should be used in the experiments can be found&nbsp;in the GitHub repository&nbsp;<a href=\"https://github.com/deezer/CrossCulturalMusicGenrePerception\">deezer/CrossCulturalMusicGenrePerception</a>.</p>\n\n<p>Please cite our paper if you use the code or data in your work.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Dataset from the EMNLP 2020 article \"Modeling the Music Genre Perception across Language-Bound Cultures\"", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4275314"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4275315"
          }
        }
      ]
    }, 
    "keywords": [
      "Deezer dataset", 
      "Music genre embeddings", 
      "Cross-lingual music annotations", 
      "Multilingualism"
    ], 
    "publication_date": "2020-11-16", 
    "creators": [
      {
        "affiliation": "Deezer Research", 
        "name": "Elena V. Epure"
      }, 
      {
        "affiliation": "Deezer Research", 
        "name": "Guillaume Salha"
      }, 
      {
        "affiliation": "Deezer Research", 
        "name": "Manuel Moussallam"
      }, 
      {
        "affiliation": "Deezer Research", 
        "name": "Romain Hennequin"
      }
    ], 
    "meeting": {
      "acronym": "EMNLP", 
      "url": "https://2020.emnlp.org", 
      "dates": "16-20 November 2020", 
      "title": "he 2020 Conference on Empirical Methods in Natural Language Processing"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4275314", 
        "relation": "isVersionOf"
      }
    ]
  }
}
68
8
views
downloads
All versions This version
Views 6868
Downloads 88
Data volume 21.6 GB21.6 GB
Unique views 6161
Unique downloads 77

Share

Cite as