Journal article Open Access

Wood Properties Characterisation of Thermo‐Hydro Mechanical Treated Plantation and Native Tasmanian Timber Species

Michelle Balasso; Andreja Kutnar; Eva Prelovšek Niemelä; Marica Mikuljan; Gregory Nolan; Nathan Kotlarewski; Mark Hunt; Andrew Jacobs; Julianne O'Reilly‐Wapstra


Citation Style Language JSON Export

{
  "DOI": "10.3390/f11111189", 
  "container_title": "Forests", 
  "title": "Wood Properties Characterisation of Thermo\u2010Hydro Mechanical Treated Plantation and Native Tasmanian Timber Species", 
  "issued": {
    "date-parts": [
      [
        2020, 
        11, 
        10
      ]
    ]
  }, 
  "abstract": "<p>Thermo\u2010hydro mechanical (THM) treatments and thermo\u2010treatments are used to improve the properties of wood species and enhance their uses without the application of chemicals. This work investigates and compares the effects of THM treatments on three timber species from Tasmania, Australia; plantation fibre\u2010grown shining gum (Eucalyptus nitens H. Deane and Maiden), plantation saw\u2010log radiata pine (Pinus radiata D. Don) and native\u2010grown saw\u2010log timber of the common name Tasmanian oak (which can be any of E. regnans F. Muell, E. obliqua L&rsquo;H&eacute;r and E. delegatensis L&rsquo;H&eacute;r). Thin lamellae were compressed by means of THM treatment from 8 mm to a target final thickness of 5 mm to investigate the suitability for using THM\u2010treated lamellas in engineered wood products. The springback, mass loss, set\u2010recovery after soaking, dimensional changes, mechanical properties, and Brinell hardness were used to evaluate the effects of the treatment on the properties of the species. The results show a marked increase in density for all three species, with the largest increase presented by E. nitens (+53%) and the smallest by Tasmanian oak (+41%). E. nitens displayed improvements both in stiffness and strength, while stiffness decreased in P. radiata samples and strength in Tasmanian oak samples. E. nitens also displayed the largest improvement in hardness (+94%) with respect to untreated samples. P. radiata presented the largest springback whilst having the least mass loss. E. nitens and Tasmanian oak showed similar dimensional changes, whilst P. radiata timber had the largest thickness swelling and set\u2010recovery due to the high water absorption (99%). This study reported the effects of THM treatments in less\u2010 known and commercially important timber species, demonstrating that the wood properties of a fibre\u2010grown timber can be improved through the treatments, potentially increasing the utilisation of E. nitens for structural and higher quality timber applications.</p>", 
  "ISSN": "1999-4907", 
  "volume": "11", 
  "author": [
    {
      "family": "Michelle Balasso"
    }, 
    {
      "family": "Andreja Kutnar"
    }, 
    {
      "family": "Eva Prelov\u0161ek Niemel\u00e4"
    }, 
    {
      "family": "Marica Mikuljan"
    }, 
    {
      "family": "Gregory Nolan"
    }, 
    {
      "family": "Nathan Kotlarewski"
    }, 
    {
      "family": "Mark Hunt"
    }, 
    {
      "family": "Andrew Jacobs"
    }, 
    {
      "family": "Julianne O'Reilly\u2010Wapstra"
    }
  ], 
  "type": "article-journal", 
  "issue": "11", 
  "id": "4268387"
}
51
34
views
downloads
Views 51
Downloads 34
Data volume 28.2 MB
Unique views 46
Unique downloads 31

Share

Cite as