Journal article Open Access

Bioaugmentation of Entomopathogenic Fungi for Sustainable Agriotes Larvae (Wireworms) Management in Maize

Jaka Razinger; Eva Praprotnik; Hans-Josef Schroers


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">biological control</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">biopesticide</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">plant–microbe interaction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">plant–microbe–insect interaction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">rhizosphere</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">sustainable agriculture</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">plant-microbe-pest interaction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">biocontrol</subfield>
  </datafield>
  <controlfield tag="005">20201112085149.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The research was financed partly by the Slovenian Research
Agency (ARRS) (Agrobiodiversity program group, grant number
P4-0072 and a grant to EP, 1000-18-0401), the Administration of
the Republic of Slovenia for Food Safety, Veterinary Sector and
Plant Protection (UVHVVR), Ministry of Agriculture, Forestry
and Food (MKGP), the EU FP7 Project CropSustaIn (grant FP7-
REGPOT-CT2012-316205), and H2020 projects EXCALIBUR
(grant 817946) and ECOBREED (grant 771367).</subfield>
  </datafield>
  <controlfield tag="001">4265994</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kmetijski Inštitut Slovenije</subfield>
    <subfield code="a">Eva Praprotnik</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kmetijski Inštitut Slovenije</subfield>
    <subfield code="a">Hans-Josef Schroers</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1292179</subfield>
    <subfield code="z">md5:64e747b63234bf98475e8d3a9f0a7b40</subfield>
    <subfield code="u">https://zenodo.org/record/4265994/files/Razinger, Praprotnik, Schroers, 2020, FiPS, Bioaugmentation of EPF vs Agriotes Wireworms in Maize.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ecobreed</subfield>
    <subfield code="p">user-excalibur</subfield>
    <subfield code="o">oai:zenodo.org:4265994</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kmetijski Inštitut Slovenije</subfield>
    <subfield code="a">Jaka Razinger</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bioaugmentation of Entomopathogenic Fungi for Sustainable Agriotes Larvae (Wireworms) Management in Maize</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecobreed</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-excalibur</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">817946</subfield>
    <subfield code="a">Exploiting the multifunctional potential of belowground biodiversity in horticultural farming</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">771367</subfield>
    <subfield code="a">Increasing the efficiency and competitiveness of organic crop breeding</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">316205</subfield>
    <subfield code="a">Integrated Approaches for Sustainable Crop Production in Slovenia: Resisting Global Changes.</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Soil microorganisms influence biotic and abiotic stress tolerance of crops. Most&lt;br&gt;
interactions between plant symbiotic and non-symbiotic soil microorganisms and plants&lt;br&gt;
occur in the rhizosphere and are sustained through plant exudation/rhizodeposition.&lt;br&gt;
Bioaugmentation, i.e., the introduction or amplification of certain plant beneficial microbes&lt;br&gt;
(e.g., entomopathogenic fungi) into the rhizosphere, could contribute to controlling insect&lt;br&gt;
crop pests and replacing chemical, environmentally unfriendly insecticides. Wireworms,&lt;br&gt;
the soil-burrowing larval stages of click beetles (Coleoptera: Elateridae), are major pests of&lt;br&gt;
crops including maize, wheat and potatoes, worldwide. Alternative strategies for&lt;br&gt;
controlling wireworms are needed because several chemical pesticides used&lt;br&gt;
successfully in the past are being phased out because of their ecotoxicity. Therefore,&lt;br&gt;
virulence to Agriotes lineatus L. wireworms and plant beneficial traits of&lt;br&gt;
entomopathogenic fungi were investigated in a series of laboratory experiments. Tested&lt;br&gt;
taxa included environmentally retrieved Metarhizium brunneum Petch. (two strains), M.&lt;br&gt;
robertsii Bisch., Rehner &amp;amp; Humber (Hypocreales: Clavicipitaceae), and Beauveria&lt;br&gt;
brongniartii (Sacc.) Petch. and commercially formulated B. bassiana (Bals.-Criv.) Vuill.&lt;br&gt;
(Cordycipitaceae) and Bacillus thuringiensis Berliner 1915 var. kurstaki. In-house reared&lt;br&gt;
larvae were dipped in conidial suspension, and maize and wheat seeds were coated with&lt;br&gt;
fungal conidia. Metarhizium brunneum strains 1154 and 1868 significantly increased&lt;br&gt;
wireworm mortality. Fungi were significantly more often re-isolated from maize than wheat&lt;br&gt;
rhizoplanes in laboratory assays. The strains tested were rarely isolated as endophytes.&lt;br&gt;
Metarhizium brunneum strain 1154 stimulated wheat growth, while M. robertsii 1880&lt;br&gt;
stimulated maize growth, whereas M. brunneum 1868 and others did not affect root or&lt;br&gt;
shoot length or plant biomass significantly in laboratory settings. Metarhizium brunneum&lt;br&gt;
strain 1868, re-isolated most often from maize rhizoplane, caused the highest wireworm&lt;br&gt;
mortality. It was further evaluated whether M. brunneum 1868 can protect maize varieties&lt;br&gt;
FeroXXY, LG 34.90 and Chapalu from wireworm damage and promote plant growth at&lt;br&gt;
field conditions. Plants of all three varieties stemming from seeds treated with conidia of M.&lt;br&gt;
brunneum 1868 showed significantly less wireworm damage 3 to 4 weeks after sowing (5-to 6-leaf stage) resulting in a significantly higher initial maize stand. However, only in the&lt;br&gt;
variety LG 34.90 a significant increase of the maize stand was observed at harvest time.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3389/fpls.2020.535005</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
43
32
views
downloads
Views 43
Downloads 32
Data volume 41.3 MB
Unique views 35
Unique downloads 31

Share

Cite as