Journal article Open Access

Bioaugmentation of Entomopathogenic Fungi for Sustainable Agriotes Larvae (Wireworms) Management in Maize

Jaka Razinger; Eva Praprotnik; Hans-Josef Schroers


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4265994</identifier>
  <creators>
    <creator>
      <creatorName>Jaka Razinger</creatorName>
      <affiliation>Kmetijski Inštitut Slovenije</affiliation>
    </creator>
    <creator>
      <creatorName>Eva Praprotnik</creatorName>
      <affiliation>Kmetijski Inštitut Slovenije</affiliation>
    </creator>
    <creator>
      <creatorName>Hans-Josef Schroers</creatorName>
      <affiliation>Kmetijski Inštitut Slovenije</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Bioaugmentation of Entomopathogenic Fungi for Sustainable Agriotes Larvae (Wireworms) Management in Maize</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>biological control</subject>
    <subject>biopesticide</subject>
    <subject>plant–microbe interaction</subject>
    <subject>plant–microbe–insect interaction</subject>
    <subject>rhizosphere</subject>
    <subject>sustainable agriculture</subject>
    <subject>plant-microbe-pest interaction</subject>
    <subject>biocontrol</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4265994</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3389/fpls.2020.535005</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecobreed</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/excalibur</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Soil microorganisms influence biotic and abiotic stress tolerance of crops. Most&lt;br&gt;
interactions between plant symbiotic and non-symbiotic soil microorganisms and plants&lt;br&gt;
occur in the rhizosphere and are sustained through plant exudation/rhizodeposition.&lt;br&gt;
Bioaugmentation, i.e., the introduction or amplification of certain plant beneficial microbes&lt;br&gt;
(e.g., entomopathogenic fungi) into the rhizosphere, could contribute to controlling insect&lt;br&gt;
crop pests and replacing chemical, environmentally unfriendly insecticides. Wireworms,&lt;br&gt;
the soil-burrowing larval stages of click beetles (Coleoptera: Elateridae), are major pests of&lt;br&gt;
crops including maize, wheat and potatoes, worldwide. Alternative strategies for&lt;br&gt;
controlling wireworms are needed because several chemical pesticides used&lt;br&gt;
successfully in the past are being phased out because of their ecotoxicity. Therefore,&lt;br&gt;
virulence to Agriotes lineatus L. wireworms and plant beneficial traits of&lt;br&gt;
entomopathogenic fungi were investigated in a series of laboratory experiments. Tested&lt;br&gt;
taxa included environmentally retrieved Metarhizium brunneum Petch. (two strains), M.&lt;br&gt;
robertsii Bisch., Rehner &amp;amp; Humber (Hypocreales: Clavicipitaceae), and Beauveria&lt;br&gt;
brongniartii (Sacc.) Petch. and commercially formulated B. bassiana (Bals.-Criv.) Vuill.&lt;br&gt;
(Cordycipitaceae) and Bacillus thuringiensis Berliner 1915 var. kurstaki. In-house reared&lt;br&gt;
larvae were dipped in conidial suspension, and maize and wheat seeds were coated with&lt;br&gt;
fungal conidia. Metarhizium brunneum strains 1154 and 1868 significantly increased&lt;br&gt;
wireworm mortality. Fungi were significantly more often re-isolated from maize than wheat&lt;br&gt;
rhizoplanes in laboratory assays. The strains tested were rarely isolated as endophytes.&lt;br&gt;
Metarhizium brunneum strain 1154 stimulated wheat growth, while M. robertsii 1880&lt;br&gt;
stimulated maize growth, whereas M. brunneum 1868 and others did not affect root or&lt;br&gt;
shoot length or plant biomass significantly in laboratory settings. Metarhizium brunneum&lt;br&gt;
strain 1868, re-isolated most often from maize rhizoplane, caused the highest wireworm&lt;br&gt;
mortality. It was further evaluated whether M. brunneum 1868 can protect maize varieties&lt;br&gt;
FeroXXY, LG 34.90 and Chapalu from wireworm damage and promote plant growth at&lt;br&gt;
field conditions. Plants of all three varieties stemming from seeds treated with conidia of M.&lt;br&gt;
brunneum 1868 showed significantly less wireworm damage 3 to 4 weeks after sowing (5-to 6-leaf stage) resulting in a significantly higher initial maize stand. However, only in the&lt;br&gt;
variety LG 34.90 a significant increase of the maize stand was observed at harvest time.&lt;/p&gt;</description>
    <description descriptionType="Other">The research was financed partly by the Slovenian Research
Agency (ARRS) (Agrobiodiversity program group, grant number
P4-0072 and a grant to EP, 1000-18-0401), the Administration of
the Republic of Slovenia for Food Safety, Veterinary Sector and
Plant Protection (UVHVVR), Ministry of Agriculture, Forestry
and Food (MKGP), the EU FP7 Project CropSustaIn (grant FP7-
REGPOT-CT2012-316205), and H2020 projects EXCALIBUR
(grant 817946) and ECOBREED (grant 771367).</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/817946/">817946</awardNumber>
      <awardTitle>Exploiting the multifunctional potential of belowground biodiversity in horticultural farming</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/771367/">771367</awardNumber>
      <awardTitle>Increasing the efficiency and competitiveness of organic crop breeding</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/316205/">316205</awardNumber>
      <awardTitle>Integrated Approaches for Sustainable Crop Production in Slovenia: Resisting Global Changes.</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
43
32
views
downloads
Views 43
Downloads 32
Data volume 41.3 MB
Unique views 35
Unique downloads 31

Share

Cite as