
Tools and Methodology for Converting Natural
Language into RDF Representations

Olga Loia
MSc in Web Intelligence

International Hellenic University
Thessaloniki 57400, Greece

olgaloia@yahoo.gr

Eleni Kamateri
MSc in Web Intelligence

International Hellenic University
Thessaloniki 57400, Greece

ekamater@hotmail.com

Pavlos D. Vasileiadis
MSc in Web Intelligence

International Hellenic University
Thessaloniki 57400, Greece

ait12019@ait.ihu.gr

ABSTRACT
Recently, there is an increased interest on approaches,
methodologies and tools converting natural language into
machine readable representations, such as RDF format.
Although several steps have been made towards Natural
Language Processing (NLP) domain, the machine
intelligence for understanding natural language is still a
topic of high research interest and its further exploration is
going to bring significant benefits to several sub-tasks such
as machine translation and questions answering. Natural
language processing and natural language understanding
are the usual approaches to transform the textual content
from being unstructured and ambiguous, into structured and
unambiguous. The current article presents the pipeline of
linguistic processing and knowledge extraction techniques
that are combined together in order to extract structured
knowledge from natural language textual content and
populate a knowledge base with quality triples. Moreover,
it gives an overview of existing knowledge extraction tools
found in the literature. Last, a short discussion and
comparison of these tools is provided, and the article
concludes with a brief summary.

Keywords
Natural language processing, natural language
understanding, knowledge extraction, RDF representation,
tools

1. INTRODUCTION
In our days, an increasing amount of unstructured text is
generated on the Web. It is true that semantic technologies
and NLP techniques can serve an important role in
mapping and linking of text to formal knowledge
representations for achieving efficient retrieval and
management. However, unambiguous processing of natural
language, in particular, the ability to capture complex
knowledge statements is far from finding a solution. The
efforts to extract more complex insights from the text
persistently require other NLP approaches.

A key approach on this issue is producing quality linked
data and ontologies from text, which can enhance the
accuracy of the question answering and the machine
reading applications. A combination of language and
knowledge processing can produce a pipeline that is

capable of extracting knowledge in structured forms, to
generate quality triples for the Semantic Web through two
main tasks [1]: a) linguistic processing tasks, and b)
knowledge extraction tasks. The linguistic tasks are mainly
useful for the pre-processing of the text, and the knowledge
extraction tasks can prove useful for processing the text and
generating a form that can be used to extract the triples
without losing semantics.

The rest of this article is structured as follows. Section 2
describes the pipeline of language and knowledge
processing tasks for extracting structured knowledge from
natural language text. Section 3 presents knowledge
extraction tools. Last, section 4 concludes the work giving
a brief overview of the discussed topics.

2. LANGUAGE AND KNOWLEDGE
PROCESSING PIPELINE
The language and knowledge processing pipeline for
knowledge extraction consists of a series of linguistic
processing and knowledge extraction tasks/components that
can be applied the one after the other or simultaneously.

First in the pipeline goes the step of linguistic processing
tasks. Early NLP approaches were mainly rule-based
techniques, because the computational power was not
sufficient enough to use machine learning or statistical
methods. Later NLP approaches adopted the use of
statistical models in order to increase the performance of
some demanding linguistic processing tasks such as Part-
of-Speech (POS) tagging.

Thereafter, it comes the knowledge extraction tasks which
focus on the extraction of machine-readable knowledge
from the textual content. Both rule-based and statistical-
based techniques can be seen in the literature

In the following sub-sections, both linguistic processing
and knowledge extraction tasks are analyzed.

2.1 Linguistic processing tasks
The linguistic processing components are the first tasks
taking place in the language and knowledge processing
pipeline. These components are used for cleaning and
preparing the text before sending it to the knowledge
extraction components.

Text cleansing involves splitting the text into tokens
(tokenization), removing punctuation, extra spaces, text
between brackets, and even unwanted text, including stop
words, etc. On the other hand, preparing the text involves
techniques such as splitting sentences into segments
(segmentation), assigning a category to each token in the
sentence (POS tagging), stemming/lemmatization to
identify the root of a word and parsing (syntactic analysis)
of a sentence.

Below, an overview of the most commonly used linguistic
processing tasks is provided.

2.1.1 Stop Word Handling
The term “stop word” refers to the most common words in
a language such as function words, like “the”, “is”, “at” and
others, and marks like dot, comma and semicolon. While
search engines remove function words, linguistic
processing tools should identify stop words but not remove
them because they can contain invaluable information
about the relationship between different tokens.

In general, we can remove stop words while performing the
following tasks:

• Text Classification

1. Spam Filtering

2. Language Classification

3. Genre Classification

• Caption Generation

• Auto-Tag Generation

While, we can avoid stop word removal:

• Machine Translation

• Language Modeling

• Text Summarization

• Question-Answering problems

Here’s a basic list of stop words:

a about after all also always aman and any are at be been
being but by came can cant come could did didn't do does
doesn't doing don't else for from get give goes going had
happen has have having how i if ill i'm in into is isn't it its
i've just keep let like made make many may me mean more
most much no not now of only or our really say see some
something take tell than that the their them then they thing
this to try up us use used uses very want was way we what
when where which who why will with without wont you
your youre

2.1.2 Tokenization
Tokenization is the process of splitting a sentence into
smaller units (tokens) using a separator or a whitespace (or
ML techniques). In case the input text is a natural language
question, the sentence ends either with a question mark or
with a period, so simple whitespace splitting tokenizers are
often not good enough. Depending on the task to solve, part
of the tokenization process can be split on punctuation
marks or deleting them.

The tokenization process is crucial as most of the
subsequent components in the pipeline cannot process the
whole text without being tokenized. Hence, a low accuracy
tokenizer can affect the results of the whole pipeline.

Here is an example of the tokenization process performed
on a phrase:

Input: Friends, Romans, Countrymen, lend me your ears;

Output:

2.1.3 Segmentation
A common NLP task, usually used in standard NLP
pipelines, is the sentence segmentation, also called sentence
splitting. As seen in Figure 2, segmentation is used to split
the given text into separate sentences. The task is based on
rules that enable punctuation detection such as full stops,
question marks and determine if they indicate the end of a
sentence. A list of abbreviations is used by some of these
rules such as to distinguish a full stop intended for an
abbreviation from full stops to end a sentence. Moreover,

Fig. 1: A typical pre-processing NLP pipeline.

Fig. 2: A typical pre-processing NLP pipeline.

some rules used by splitters are implemented to identify
and handle structures of different sentences such as bullet
lists, titles and addresses which can cause many errors in
the segmentation task. For the aim of improving the
accuracy of sentence splitters they can be trained on
different types of text such as wiki text, hash tags, etc.

Fig. 3: An example output of the segmentation process.

2.1.4 Part Of Speech (POS) Tagging
POS Tagging refers to a category of words with similar
grammatical properties. All languages have the POS tags
noun and verb. The tagging is based both on the token itself
and its context. For example, in the sentence “Give me your
answer”, “answer” is a Noun, but in the sentence “Answer
the question”, “answer” is a verb.

For POS Tagging, it is important to tokenize the text and
identify end-of-sentence punctuation. The information
produced by the POS tagger is used by the next linguistic
processing tasks in the pipeline, which are the
lemmatization and the dependency tree parsing.

Fig. 4: PoS tags and dependency tree using Stanford

CoreNLP [2].

There are different techniques for POS Tagging:

● Lexical-based methods: This method assigns the
POS tag the most frequently occurring with a
word in the training corpus.

● Rule-based methods: This method assigns the POS
tags based on rules. For example, we can have a
rule that says words ending with “ed” or “ing”
must be assigned to a verb. Rule-Based
Techniques can be used along with Lexical Based
approaches to allow POS Tagging of words that
are not present in the training corpus but are there
in the testing data.

● Probabilistic methods: This method assigns the
POS tags based on the probability of a particular
tag sequence occurring. Conditional Random
Fields (CRFs) and Hidden Markov Models

(HMMs) are probabilistic approaches to assign a
POS Tag.

● Deep learning methods: Recurrent Neural
Networks can also be used for POS tagging.

Fig. 5: An example output of the POS tagging process.

2.1.5 Stemming and Lemmatization
Both stemming and lemmatization are aiming to reduce
inflectional and derivationally related forms of a word to a
common base form.

Stemming is attempting to reduce related words of the
same stem (i.e. root form of the word) by removing
different endings of the words. To succeed this, most
stemming algorithms refer to a crude heuristic process that
chops off the ends of words. The most widely used
algorithm for stemming in English is the Porter’s
algorithm. It is based on simple rules that are applied to the
longest suffix. A weak point of stemming is that the
generated stem does not only consist of words with a
similar meaning, while same words might have very
different meaning and origin. As a matter of fact, in
general, stemming increases recall but harms precision.

On the other hand, lemmatization removes inflectional
endings and returns the lemma itself, which is either the
base form of the word or the dictionary form. For
successfully achieving that lemmatization, algorithms
usually use a vocabulary and morphological analysis of the
words. This way they connect each word with the best
deriving term. Lemmatization is usually used together with
PoS tagging, which leads to more precise distinctions
between the morphological forms of the words. Irregular
verbs are translated to their base form. In contrast to
stemming, lemmatization can be improved by using
context.

2.1.6 Parsing
Parsing is the process of analyzing the grammatical
structures (syntax) of a sentence so as to acquire the
original meaning behind the sequences of words. In most of
the cases the parser is based on context-free grammar. Two
main directions of how to look at the syntax are available:

The first main direction is constituency syntax and analyzes
not only the words but also more complex entities (i.e.
constituents). It is also known as statistical parsing. The
information produced by the parsing process is normally
stored as a syntax tree. It starts with a treebank where all
sentences are syntactically annotated (parsed sentences).
Then, the frequency of each parse tree is estimated. The
generated parse trees are then used to extract a group of
corresponding grammar rules with associated probabilities
with the aim to define the relative frequency of each rule,

which derives the most probable parse in the space against
all candidate parses using deduction.

The second main direction is dependency syntax and it
looks at the syntactic structures as relations between words.
This modern way of parsing attempts to capture the
dependency between words instead of identifying the
relations between words. The parser works by predicting a
sequence of transitions until it approaches the final
configuration, these transitions are learned from gold
sequences of transitions in a treebank, which are then used
to train a multi-class classifier.

Fig. 6: Constituency tree for the sample question ‘Who

is the director of “Inglourious Basterds”?’ using
Stanford CoreNLP [2].

2.1.7 Chunking
Chunking is another NLP process aiming to identify
segments of text that are usually syntactically correlated
such as noun phrases and verb phrases, and label them as a
multi-token sequence. A chunker can replace the parser
when a lightweight and shallow analysis is needed over the
text. There is a variety of chunkers according to the use
required, based on the definition of the relevant chunks of
text. For example, as we can see in Figure 6, the noun
phrase (NP) can be defined in the chunker as a consecutive
sequence string that combines between one or more
determiner(s), adjective(s), and noun(s). However, another
application may require to be defined so as to include an
extra prepositional phrase or relative clause. On the other
hand, verb phrase chunkers may also differ from one
application to another. For instance, the chunker may
recognize modal verbs, infinitive verbs and negative verbs
based on the application needs. Learning-based model
chunkers can be used in cases that sophisticated text in
specific domains is provided. The reliability of these
chunkers is further improved by training them on each
specific domain text as they will get better results than rule-
based chunkers. For instance, in the sentence “I bought the
baby food” a rule-based chunker would not be able to
distinguish whether the phrase “baby food” is a single NP

which represents a compound noun or “the baby” and
“food” are two independent NPs.

Fig. 7: An example output of a Noun Phrase chunker.

2.2 Knowledge extraction tasks
After the low-level linguistic processing tasks where the
main focus is on the syntactic analysis of the text,
knowledge extraction tasks offer high-level analysis of the
textual content as they focus on deriving semantics from
text. These tasks are also fundamental for the automatic
development of ontologies.

Below, an overview of the most commonly used
knowledge extraction tasks is provided.

2.2.1 Co-reference Resolution
This task is connected with the process of connecting the
different ways or the different mentions of expressing the
same entity within the text. For example, it can happen due
to the use of pronouns for expressing an aforementioned
entity.

Different methods have been proposed to address this
problem based on the complexity of the corpus. The first
method is the rule-based approach, which filters the
entities, taking into account their semantic information, and
then determines the entities that have the highest
probability to be coreferent. There are several co-reference
resolution tools that are based on rules, such as ANNIE’s
Orthomatcher [3], Stanford Coref tool [4] and SANAPHOR
[5]. The latest improves the results from Stanford Coref by
mapping the output to DBpedia ontology [6]. Other
methods include the measurement of the distance between
two entities and decision tree checks based on pre-defined
attributes.

2.2.2 Named Entity Recognition (NER) and
Classification
Named Entity Recognition is the extraction of Named
Entities, such as persons, locations, or temporal
expressions. The task is divided into the recognition of
entities and the mapping to the relevant class, which is
called classification. The NER and classification task can
be applied using three different methods: rule-based
approaches, machine learning approaches and hybrid
approaches. Rule-based approaches which are the most
widely used rely on gazetteers with regular expressions that
cannot generate good results due to the ambiguity of the
natural languages. On the other hand, machine learning
approaches perform better results but require vast amounts
of annotated training data.

2.2.3 Entity Linking and Semantic Annotation
The entity linking, or else the entity disambiguation, is part
of the semantic annotation, which deals with the annotation
of ambiguous entities in the text with a link to a unique
entity in the ontology or Linked Open Data (LOD)
resources such as DBpedia [7] [8], Freebase [9], YAGO
[10]. Entity linking is the next module in the NLP pipeline
that usually comes after the NER and classification. Entity
linking is challenging since all the LOD resources include
several mentions of the same entity in the knowledge base.
So, there is a candidate selection module to determine all
the possible entries for a given entity in the text, then a
reference disambiguation module, which uses a
probabilistic model to select the target entity with the right
URI, based on some contextual data and ontology
information.

2.2.4 Term Extraction
Unlike the NER task that focuses on identifying generic
entities spanning all domains, the text extraction deals with
entities that vary across domains and applications. There
are different approaches for term extraction, however, they
follow the same pipeline except for the way they rank the
candidate term in each corpus. The initial module in the
pipeline applies linguistic preprocessing tasks
(tokenization, segmentation, POS tagging, and NP
chunking) to recognize and filter the candidate terms, and
then various grammar rules are applied to restrict chunks
such as noun phrases and stop words. The last module is
used to rank each term in the corpus, and it can use two
approaches. The first approaches are the distributional
knowledge approaches, which typically relies on
frequency-based measures to estimate how important a
certain term is to a document in a corpus. The latest are the
contextual knowledge approaches, which use contextual
knowledge to produce weights to help with the term
ranking.

2.2.5 Relation Extraction
The relation extraction part comes after having the relevant
terms and entities extracted from the text, to understand
how these entities are related. There are different
approaches for relation extraction, some of them are
developed to focus on relations between lexical items, and
others focus on relations between concepts. Similarly, with
previous knowledge extraction tasks, there are several
relation extraction methods: rule-based approaches,
bootstrapping approaches (or else semi-supervised),
supervised approaches and unsupervised approaches.

3. KNOWLEDGE EXTRACTION
TOOLS
In this section, we present several state-of-the-art
knowledge extraction tools performing knowledge
extraction and ontology population.

3.1 FRED
FRED [3] [4] is an online tool that implements a method
for ontology learning and population in the Semantic Web.
The major difference compared with existing approaches is
that it does not rely on machine learning methods. Being
deployed as a web service means that it minimizes
computing time is of primary importance. It implements a
modular, highly interoperable and customizable
architecture aiming to ensure reusability by other
applications and extensibility.

The FRED framework is constituted by four main
components:

● The Boxer performs deep parsing of natural
language text including frame-detection and
provides an output in Discourse Representation
Structure (DRS).

● The communication component realizes a
lightweight HTTP server based on Restful
architecture, which is in charge of publicly
exposing APIs for querying the system. It takes a
language text and some optional parameters as
input and returns an ontology in OWL/RDF
construct that is internally well-connected and
linked-data-ready.

● The refactoring component transforms Boxer
output in a form to be passed to the re-engineering
component, which is responsible of implementing
the semantic transformation from the domain of
the Discourse Representation Theory to OWL;

● The re-engineering component implements all the
required translation and heuristic rules.

The first component is implemented in Prolog and last
three components in Python.

Fig. 8: An overview of the FRED architecture.

Fig. 9: FRED RDF graph for the sentence “Paul
Newman hit the window with an open hand”.

3.2 LODifier
LODifier [13] is an approach that combines deep semantic
analysis with NER, word sense disambiguation and
controlled Semantic Web vocabularies in order to extract
Named Entities and relations between them from text and
to convert them into an RDF representation which is linked
to DBpedia and WordNet [14].

After tokenization, mentions of entities in the input text are
recognized using the NER system Wikifier and mapped
onto DBpedia URIs. Relations between these entities are
detected using the statistical parser C&C [15] and the
semantics construction toolkit Boxer [16], which generates
discourse representation structures (DRS). Thereafter, the
text is lemmatized and words are disambiguated to get

WordNet mappings. The RDF graph is then created by
further processing the Boxer DRS output, transforming it
into triples. Finally, it is enriched with the DBpedia URIs
(to link its entities to the LOD cloud) and the WordNet
sense URIs (to do the same for the relations).

3.3 KNEWS
KNEWS [17] is a pipeline of NLP tools that receives as
input natural language text and returns as output knowledge
in a machine readable format. More specifically, the tool’s
output can be frame-based knowledge in the form of RDF
triples or XML, including the word-level alignment with
the surface form, as well as first-order logical formulae.

The main components of the KNEWS pipeline system are:

● a semantic parser

● a word sense disambiguation module and an entity
linking module working together.

KNEWS works by running these components separately on
a text, then it aligns the output of the semantic parser to the
output of the other two modules (see Figure 9).

3.3.1 Semantic Parsing
The semantic parsing module receives text as input and
provides a formal representation of text’s meaning as
output. To succeed this, KNEWS employs the C&C tools
and the Boxer. The C&C tools [15] are a pipeline of
statistical NLP tools including a tokenizer, a lemmatizer,
Named Entity and POS tagger, and a parser that creates a
Combinatory Categorial Grammar (CCG) representation of
the natural language syntax. The Boxer [16] is a rule-based
system that builds an abstract meaning representation on
top of the CCG analysis. Such structures contain, among
other information, predicates representing the roles of the
entities with respect to the detected events, e.g., event(A),
entity(B), agent(A,B) to represent B playing the role of the
agent of the event A.

3.3.2 Word Sense Disambiguation and Entity
Linking
KNEWS uses WordNet to represent concepts and events,
DBpedia to represent Named Entities, and FrameNet’s
frames [18] to represent events, integrating the mapping
with the WordNet synsets provided by FrameBase [19].
The thematic roles used by Boxer is taken from VerbNet
[20], while KNEWS employs the mapping provided by
SemLinks [21] to link the thematic roles to FrameNet roles.
By linking the discourse referents representing concepts to
WordNet synsets, entities to DBpedia and events to
FrameNet frames, KNEWS is able to extract semantic
representations from natural language text and link them to
Linked Open Data knowledge bases, which is important in
order to provide knowledge representation and automatic
reasoning.

Fig. 10: An overview of the LODifier architecture.

3.3.3 Outputs
In the output, KNEWS can provide three output modes:

● Frame-based Semantics: Frame instances are
sets of RDF triples that contain a unique identifier,
the type of the frame, the thematic roles involved
in the instance, and the concepts or entities that fill
the roles.

● Word-aligned Semantics. The word-aligned
semantics output mode is similar to the previous
one with the difference that it contains as
additional information the alignment with the text.

● First-order Logic. In the third output mode,
KNEWS is able to generate first-order logic
formulae representing the natural language text
given as input.

Fig. 12: An example of frame instance, extracted from
the sentence “A robot is driving the car.”

3.4 SlugNERDS
The Slugbot’s Named Entity Recognition for dialogue
Systems (SlugNERDS) tool [22] is a Named Entity
Recognition (NER) and Named Entity Linking (NEL) tool
which leverages the Google Knowledge Graph API in

conjunction with the Schema.org taxonomy to identify
known entities. The tool is optimized with respect to noisy
open domain conversation and is able to perform both
discourse and web-based entity linking.

The SlugNERDS pipeline consists of three modules:

● Entity Segmentation

● Entity Classification

[1] Entity Linking

Entity Segmentation and Entity Classification perform
Name Entity Recognition while Entity Linking works on
the recognized entity.

3.4.1 Entity Segmentation
In order to refine the list of candidate strings to query the
authors break the text into reasonable chunks. To do this,
they utilize a two-pass approach. First, a constituency tree
is constructed using Stanford CoreNLP [2] and a candidate
pool is built by collapsing each of the noun phrases, verb
phrases, and sentences in the tree. Additionally, sequential
noun clusters are collapsed from the dependency parse
which have not yet been associated with an entity to create
a secondary pool of candidates, so as to include more
candidate strings that are ignored by shallow parsing. Last,
single pronouns are excluded such as I and me unless they
seem extremely contextually relevant.

Fig. 14: A sample of a constituency tree.

Fig. 11: An overview of the KNEWS architecture

Fig. 13: An overview of the SlugNERDS pipeline.

3.4.2 Entity Classification
Once candidate phrases are collected from the entity
segmentation phase, each of these phrases are sent as
queries in the Google Knowledge Graph API and the top N
relevant entities in Candidate Pooling are gathered.

Sometimes it is possible for an entity candidate returned by
the query to have the same exact title with different entity
types. For example, there are 5 entity candidates with the
title “Star Wars: Episode III - Revenge Of The Sith” each
with a different entity type (Movie, Video Game, Book,
MusicAlbum, and BookSeries).

Since the entities returned by the Google Knowledge Graph
may not be an exact match to the query, it gives more
flexibility, while introducing some noise. Furthermore, if a
user is expected to talk about certain entity types according
to the context, increased value is placed on certain entities
while penalizing others. Based on these observations, the
authors perform a scoring algorithm that maximizes the
performance in the Candidate Ranking phase.

Once the entities are all scored, the list is re-ranked and
only the top ranked entity for each node are considered,
while also pruning away nodes whose top scoring entity
was less than a certain threshold (empirically driven).
Moreover, overlapping nodes that have candidates are
merged. In the last stage, the query/candidate is synced to
the internal discourse state representation.

3.4.3 Entity Linking
Named Entity Linking consists of two phases, Web Source
Linking and Discourse Linking. Web Source Linking
performs the linking of a known entity to existing resources

on the web while Discourse Linking is focused on the
linking of each mention of the entity within the input to the
same discourse entity in the internal representation.

3.5 Text2Onto
Text2Onto [23] is a framework for ontology learning from
natural language text, which combines machine learning
with basic linguistic processing (such as tokenization or
lemmatizing and shallow parsing) approaches. Moreover, it
is based on the GATE framework for the creation of the
linguistic algorithms and models, which provides increased
flexibility to the user. Linguistic preprocessing begins with
the tokenization and the sentence splitting. The outcome
tokens of this process serve as an input for a POS tagger
which assigns appropriate syntactic categories to all tokens.
Finally, lemmatizing or stemming is done by a
morphological analyzer and a stemmer respectively to
extract patterns.

Fig. 16: An overview of the KNEWS architecture

Fig. 15: An annotated conversation is presented based on Slugbot tool

After the basic linguistic preprocessing is done, a JAPE
transducer runs over the annotated corpus in order to match
a set of particular patterns with the ontology learning
algorithms. Whereas the left-hand side of each JAPE
pattern defines a regular expression over existing
annotations, the right-hand side describes the new
annotations to be created. For Text2Onto we developed
JAPE patterns for both shallow parsing and the
identification of modeling primitives, i.e. concepts,
instances and different types of relations. Text2Onto is
considered to be the successor of TextToOnto [24], which
lacks the flexibility of combining different algorithms and
does not facilitate any interactions with the user, which
both features have been included in the Text2Onto.

Since both types of patterns are language specific, different
sets of patterns for shallow parsing and ontology extraction
have to be defined for each language. Because of this and
due to the fact that particular processing components for
GATE have to be available for each language, Text2Onto
currently supports ontology learning only from English
texts while it is currently expanded for Spanish and
German language.

3.6 SPRAT
The SPRAT (Semantic Pattern Recognition and Annotation
Tool) [25] is an ontology generation and population
system, that enables the user to create an ontology from
scratch or modify an existing one. The system generates
new knowledge by linking text to ontologies based on
lexico-syntactic patterns.

Its architecture is composed of a number of linguistic pre-
processing components (based on GATE) followed by a set
of gazetteer lists and the JAPE transducers. More
specifically, a tokenizer divides the text into tokens, the
sentence splitter divides the text into sentences, the POS-
tagger adds POS information to tokens, a morphological
analyzer adds morphological information (root, lemma etc.)
to tokens and a NP chunker divides the text into noun
phrase chunks.

Thereafter, gazetteers look up various items in lists,
OntoRootGazetteer (optional) looks up items from the
ontology and matches them with the text, based on root
forms and JAPE transducers annotates text and adds new
items to the ontology.

It differs from Text2Onto as it does not rely on statistical
clustering for relation extraction, and it uses more lexicon-
syntactic patterns for extracting entities and relations from
text. The system accuracy can be improved by refining the
patterns and linking it with other NLP resources, such as
WordNet conceptual-semantic categories and lexical
relations.

3.7 LUIS
The advance of conversational chatbots increased the need
for natural language understanding. Due to this, several
interfaces has been created lately to accommodate this

need. Microsoft LUIS.ai or LUIS.ai or Language
Understanding Intelligent Services [26] is an example of
these natural language understanding interfaces.

LUIS is a web-based tool for natural language analysis that
can be trained for a particular domain. It utilizes machine
learning based methods to process and analyze textual
utterances. To be able to apply machine learning methods,
LUIS breaks down the utterances into smaller pieces called
tokens, by a process called tokenization. Then, it represents
the extracted semantic information of an utterance as
intents and entities. The intent represents the purpose of an
utterance while the entities represent the specific details
and information. An intent represents what the user wants
to achieve with the utterance, the overall goal. The intent is
heavily influenced by the context and the domain. An intent
of the utterance “I want to go to Germany!” could be that
the user wants to book a flight.

Fig. 17: Example JSON response for the utterance

“start tracking a run”

However, the same utterance could also mean that the user
needs a car or buy a train ticket. Furthermore, every
important fact of a sentence is mapped to an entity.
Examples of entities are dates, locations or specific
products. In the previously mentioned utterance, “I want to
go to Germany!”, the entity is Germany. LUIS lets the user
create its own sets of intents and entities and presents a
decimal value between 0 and 1 indicating how sure it is that
the identified intent is the actual intent of an utterance.

4. CONCLUSION
This article was attempted to approach the issue of
capturing complex knowledge statements from natural
language, which is a challenging problem applying in the

domain of the Natural Language Processing (NLP). More
specifically, the production of quality linked data and
ontologies from natural language can enhance the accuracy
of the question answering and machine reading
applications. Combining knowledge and language
processing produces a pipeline that is capable of extracting
knowledge in structured forms, to generate quality triples
for the Semantic Web. This requires both linguistic
processing and knowledge extraction tasks. The linguistic
tasks are mainly useful in the stage of text pre-processing
and the knowledge extraction tasks are proved useful for
text processing aiming to generate a form that can be used
to extract the triples without losing semantics.

More specifically, the article provides an overview of the
language and knowledge processing pipeline for knowledge
extraction. The pipeline consists of a series of linguistic
processing and knowledge extraction tasks/components that
can be applied sequentially or simultaneously. The
linguistic processing components are used for cleaning and
preparing the text before sending it to the knowledge
extraction components. These include stop word handling,
tokenization, segmentation, Part Of Speech (POS) tagging,
stemming and lemmatization, parsing and chunking. This
low-level linguistic processing is followed by the
knowledge extraction tasks. These include co-reference
resolution, named entity recognition and classification,
entity linking and semantic annotation, and finally term and
relation extraction.

It is following the concise presentation of several state-of-
the-art tools that perform knowledge extraction and
ontology population. These tools include FRED, LODifier,
KNEWS, SlugNERDS, Text2Onto, SPRAT, and LUIS.

5. REFERENCES
[1] F. Corcoglioniti, M. Rospocher, and A. P. Aprosio, “A 2-

phase Frame-based Knowledge Extraction Framework,”. In:
Proceedings of the 31st Annual ACM Symposium on
Applied Computing. ACM. 2016, pp. 354–361.

[2] C. D. Manning, J. Bauer, J. Finkel, and S. J. Bethard, “The
Stanford CoreNLP Natural Language Processing Toolkit,”
In: Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations. 2014, pp.
55–60.

[3] K. Bontcheva, M. Dimitrov, D. Maynard, V. Tablan, and H.
Cunningham, “Shallow Methods for Named Entity
Coreference Resolution,” In: Chaınes de references et
resolveurs d’anaphores, workshop TALN. 2002.

[4] K. Raghunathan et al., “Raghunathan - A Multi-Pass Sieve
for Coreference Resolution.” In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics. 2010,
pp. 492–501

[5] R. Prokofyev, A. Tonon, M. Luggen, L. Vouilloz, D. E.
Difallah, and P. Cudré-Mauroux, “SANAPHOR: Ontology-
based coreference resolution,” In: International Semantic
Web Conference. Springer. 2015, pp. 458–473.

[6] C. Bizer et al., “DBpedia - A crystallization point for the
Web of Data,” In: Web Semantics: science, services and
agents on the world wide web 7.3 (2009), pp. 154–165.

[7] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer,
“DBpedia spotlight: Shedding light on the web of
documents,” In: Proceedings of the 7th international
conference on semantic systems. ACM. 2011, pp. 1–8

[8] J. Hoffart et al., “Robust disambiguation of named entities in
text,” In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Association for
Computational Linguistics. 2011, pp. 782–792.

[9] Z. Zheng, X. Si, F. Li, E. Y. Chang, and X. Zhu, “Entity
disambiguation with Freebase,” In: Proceedings of the The
2012 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent TechnologyVolume
01. IEEE Computer Society. 2012, pp. 82–89

[10] W. Shen, J. Wang, P. Luo, and M. Wang, “LINDEN:
Linking named entities with knowledge base via semantic
knowledge,” In: Proceedings of the 21st international
conference on World Wide Web. ACM. 2012, pp. 449–458

[11] V. Presutti, F. Draicchio, and A. Gangemi, “Knowledge
extraction based on discourse representation theory and
linguistic frames,” In: International conference on knowledge
engineering and knowledge management. Springer. 2012, pp.
114–129

[12] F. Draicchio, A. Gangemi, V. Presutti, and A. G. Nuzzolese,
“FRED: From natural language text to RDF and OWL in one
click,” In: Extended Semantic Web Conference. Springer.
2013, pp. 263–267.

[13] I. Augenstein, S. Padó, and S. Rudolph, “LODifier:
Generating linked data from unstructured text,” In: Extended
Semantic Web Conference. Springer. 2012, pp. 210–224

[14] G. A. Miller, “WordNet : A Lexical Database for English,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41,
1995.

[15] J. R. Curran, S. Clark, and J. Bos, “Linguistically motivated
large-scale NLP with C&C and boxer,” In: Proceedings of
the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions. Association for Computational
Linguistics. 2007, pp. 33–36

[16] J. Bos, “Wide-Coverage Semantic Analysis with Boxer,” In:
Proceedings of the 2008 Conference on Semantics in Text
Processing. Association for Computational Linguistics. 2008,
pp. 277–286.

[17] V. Basile, E. Cabrio, and C. Schon, “KNEWS: Using Logical
and Lexical Semantics to Extract Knowledge from Natural
Language,” In: Proceedings of the European conference on
artificial intelligence (ECAI) 2016 conference. 2016.

[18] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley
FrameNet Project,” In: Proceedings of the 17th international
conference on Computational linguistics-Volume 1.
Association for Computational Linguistics. 1998, pp. 86–90

[19] J. Rouces, G. De Melo, and K. Hose, “FrameBase :
Representing N-ary Relations using Semantic Frames.”I n
Proceedings of ESWC 2015, pages 505--521, 2015.

[20] K. K. Schuler, “VerbNet: A Broad-Coverage,
Comprehensive Verb Lexicon,” Diss. Abstr. Int. B Sci. Eng.,
vol. 66, no. 6, 2005.

[21] M. Palmer, C. Bonial, and D. McCarthy, “SemLink+:
FrameNet, VerbNet and Event Ontologies,” In Proceedings
of Frame Semantics in NLP: A Workshop in Honor of Chuck
Fillmore (1929-2014) (pp. 13-17).

[22] M. Bowden, K., Wu, J., Oraby, S., Misra, A., & Walker,
“SlugNERDS: A Named Entity Recognition Tool for Open
Domain dialogue Systems,” in Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[23] P. Cimiano and J. Völker, “Text2Onto A framework for
ontology learning and data-driven change discovery,” In:
International conference on application of natural language
to information systems. Springer. 2005, pp. 227–238.

[24] A. Maedche and S. Staab, “Ontology Learning,” In:
Handbook on ontologies. Springer, 2004, pp. 173–190

[25] D. Maynard, A. Funk, and W. Peters, “SPRAT : a tool for
automatic semantic pattern-based ontology population.” In:
International conference for digital libraries and the semantic
web, Trento, Italy. 2009

[26] J. D. Williams, E. Kamal, M. Ashour, H. Amr, J. Miller, and
G. Zweig, “Fast and easy Language Understanding for dialog
systems with Microsoft Language Understanding Intelligent
Service (LUIS),” SIGDIAL 2015 - 16th Annu. Meet. Spec.
Interes. Gr. Discourse Dialogue, Proc. Conf., pp. 159–161,
2015.

