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ABSTRACT 
Recently, there is an increased interest on approaches, 
methodologies and tools converting natural language into 
machine readable representations, such as RDF format. 
Although several steps have been made towards Natural 
Language Processing (NLP) domain, the machine 
intelligence for understanding natural language is still a 
topic of high research interest and its further exploration is 
going to bring significant benefits to several sub-tasks such 
as machine translation and questions answering. Natural 
language processing and natural language understanding 
are the usual approaches to transform the textual content 
from being unstructured and ambiguous, into structured and 
unambiguous. The current article presents the pipeline of 
linguistic processing and knowledge extraction techniques 
that are combined together in order to extract structured 
knowledge from natural language textual content and 
populate a knowledge base with quality triples. Moreover, 
it gives an overview of existing knowledge extraction tools 
found in the literature. Last, a short discussion and 
comparison of these tools is provided, and the article 
concludes with a brief summary. 
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1. INTRODUCTION 
In our days, an increasing amount of unstructured text is 
generated on the Web. It is true that semantic technologies 
and NLP techniques can serve an important role in 
mapping and linking of text to formal knowledge 
representations for achieving efficient retrieval and 
management. However, unambiguous processing of natural 
language, in particular, the ability to capture complex 
knowledge statements is far from finding a solution. The 
efforts to extract more complex insights from the text 
persistently require other NLP approaches.  

A key approach on this issue is producing quality linked 
data and ontologies from text, which can enhance the 
accuracy of the question answering and the machine 
reading applications. A combination of language and 
knowledge processing can produce a pipeline that is 

capable of extracting knowledge in structured forms, to 
generate quality triples for the Semantic Web through two 
main tasks [1]: a) linguistic processing tasks, and b) 
knowledge extraction tasks. The linguistic tasks are mainly 
useful for the pre-processing of the text, and the knowledge 
extraction tasks can prove useful for processing the text and 
generating a form that can be used to extract the triples 
without losing semantics.  

The rest of this article is structured as follows. Section 2 
describes the pipeline of language and knowledge 
processing tasks for extracting structured knowledge from 
natural language text. Section 3 presents knowledge 
extraction tools. Last, section 4 concludes the work giving 
a brief overview of the discussed topics. 

2. LANGUAGE AND KNOWLEDGE 
PROCESSING PIPELINE 
The language and knowledge processing pipeline for 
knowledge extraction consists of a series of linguistic 
processing and knowledge extraction tasks/components that 
can be applied the one after the other or simultaneously.  

First in the pipeline goes the step of linguistic processing 
tasks. Early NLP approaches were mainly rule-based 
techniques, because the computational power was not 
sufficient enough to use machine learning or statistical 
methods. Later NLP approaches adopted the use of 
statistical models in order to increase the performance of 
some demanding linguistic processing tasks such as Part-
of-Speech (POS) tagging.  

Thereafter, it comes the knowledge extraction tasks which 
focus on the extraction of machine-readable knowledge 
from the textual content. Both rule-based and statistical-
based techniques can be seen in the literature 

In the following sub-sections, both linguistic processing 
and knowledge extraction tasks are analyzed.  

2.1 Linguistic processing tasks 
The linguistic processing components are the first tasks 
taking place in the language and knowledge processing 
pipeline. These components are used for cleaning and 
preparing the text before sending it to the knowledge 
extraction components.  



Text cleansing involves splitting the text into tokens 
(tokenization), removing punctuation, extra spaces, text 
between brackets, and even unwanted text, including stop 
words, etc. On the other hand, preparing the text involves 
techniques such as splitting sentences into segments 
(segmentation), assigning a category to each token in the 
sentence (POS tagging), stemming/lemmatization to 
identify the root of a word and parsing (syntactic analysis) 
of a sentence. 

Below, an overview of the most commonly used linguistic 
processing tasks is provided.  

2.1.1 Stop Word Handling 
The term “stop word” refers to the most common words in 
a language such as function words, like “the”, “is”, “at” and 
others, and marks like dot, comma and semicolon. While 
search engines remove function words, linguistic 
processing tools should identify stop words but not remove 
them because they can contain invaluable information 
about the relationship between different tokens.  

In general, we can remove stop words while performing the 
following tasks: 

• Text Classification 

1. Spam Filtering 

2. Language Classification 

3. Genre Classification 

• Caption Generation 

• Auto-Tag Generation 

While, we can avoid stop word removal: 

• Machine Translation 

• Language Modeling 

• Text Summarization 

• Question-Answering problems 

Here’s a basic list of stop words: 

a about after all also always aman and any are at be been 
being but by came can cant come could did didn't do does 
doesn't doing don't else for from get give goes going had 
happen has have having how i if ill i'm in into is isn't it its 
i've just keep let like made make many may me mean more 
most much no not now of only or our really say see some 
something take tell than that the their them then they thing 
this to try up us use used uses very want was way we what 
when where which who why will with without wont you 
your youre 

2.1.2 Tokenization 
Tokenization is the process of splitting a sentence into 
smaller units (tokens) using a separator or a whitespace (or 
ML techniques). In case the input text is a natural language 
question, the sentence ends either with a question mark or 
with a period, so simple whitespace splitting tokenizers are 
often not good enough. Depending on the task to solve, part 
of the tokenization process can be split on punctuation 
marks or deleting them.  

The tokenization process is crucial as most of the 
subsequent components in the pipeline cannot process the 
whole text without being tokenized. Hence, a low accuracy 
tokenizer can affect the results of the whole pipeline.  

Here is an example of the tokenization process performed 
on a phrase: 

Input: Friends, Romans, Countrymen, lend me your ears; 

Output:  

 
2.1.3 Segmentation 
A common NLP task, usually used in standard NLP 
pipelines, is the sentence segmentation, also called sentence 
splitting. As seen in Figure 2, segmentation is used to split 
the given text into separate sentences. The task is based on 
rules that enable punctuation detection such as full stops, 
question marks and determine if they indicate the end of a 
sentence. A list of abbreviations is used by some of these 
rules such as to distinguish a full stop intended for an 
abbreviation from full stops to end a sentence. Moreover, 

Fig. 1: A typical pre-processing NLP pipeline. 
 

Fig. 2: A typical pre-processing NLP pipeline. 



some rules used by splitters are implemented to identify 
and handle structures of different sentences such as bullet 
lists, titles and addresses which can cause many errors in 
the segmentation task. For the aim of improving the 
accuracy of sentence splitters they can be trained on 
different types of text such as wiki text, hash tags, etc. 

 
Fig. 3: An example output of the segmentation process. 

2.1.4 Part Of Speech (POS) Tagging 
POS Tagging refers to a category of words with similar 
grammatical properties. All languages have the POS tags 
noun and verb. The tagging is based both on the token itself 
and its context. For example, in the sentence “Give me your 
answer”, “answer” is a Noun, but in the sentence “Answer 
the question”, “answer” is a verb. 

For POS Tagging, it is important to tokenize the text and 
identify end-of-sentence punctuation. The information 
produced by the POS tagger is used by the next linguistic 
processing tasks in the pipeline, which are the 
lemmatization and the dependency tree parsing. 

 
Fig. 4: PoS tags and dependency tree using Stanford 

CoreNLP [2]. 

There are different techniques for POS Tagging: 

● Lexical-based methods: This method assigns the 
POS tag the most frequently occurring with a 
word in the training corpus. 

● Rule-based methods: This method assigns the POS 
tags based on rules. For example, we can have a 
rule that says words ending with “ed” or “ing” 
must be assigned to a verb. Rule-Based 
Techniques can be used along with Lexical Based 
approaches to allow POS Tagging of words that 
are not present in the training corpus but are there 
in the testing data. 

● Probabilistic methods: This method assigns the 
POS tags based on the probability of a particular 
tag sequence occurring. Conditional Random 
Fields (CRFs) and Hidden Markov Models 

(HMMs) are probabilistic approaches to assign a 
POS Tag. 

● Deep learning methods: Recurrent Neural 
Networks can also be used for POS tagging. 

 
Fig. 5: An example output of the POS tagging process. 

2.1.5 Stemming and Lemmatization 
Both stemming and lemmatization are aiming to reduce 
inflectional and derivationally related forms of a word to a 
common base form.  

Stemming is attempting to reduce related words of the 
same stem (i.e. root form of the word) by removing 
different endings of the words. To succeed this, most 
stemming algorithms refer to a crude heuristic process that 
chops off the ends of words. The most widely used 
algorithm for stemming in English is the Porter’s 
algorithm. It is based on simple rules that are applied to the 
longest suffix. A weak point of stemming is that the 
generated stem does not only consist of words with a 
similar meaning, while same words might have very 
different meaning and origin. As a matter of fact, in 
general, stemming increases recall but harms precision.  

On the other hand, lemmatization removes inflectional 
endings and returns the lemma itself, which is either the 
base form of the word or the dictionary form. For 
successfully achieving that lemmatization, algorithms 
usually use a vocabulary and morphological analysis of the 
words. This way they connect each word with the best 
deriving term. Lemmatization is usually used together with 
PoS tagging, which leads to more precise distinctions 
between the morphological forms of the words. Irregular 
verbs are translated to their base form. In contrast to 
stemming, lemmatization can be improved by using 
context. 

2.1.6 Parsing 
Parsing is the process of analyzing the grammatical 
structures (syntax) of a sentence so as to acquire the 
original meaning behind the sequences of words. In most of 
the cases the parser is based on context-free grammar. Two 
main directions of how to look at the syntax are available: 

The first main direction is constituency syntax and analyzes 
not only the words but also more complex entities (i.e. 
constituents). It is also known as statistical parsing. The 
information produced by the parsing process is normally 
stored as a syntax tree. It starts with a treebank where all 
sentences are syntactically annotated (parsed sentences). 
Then, the frequency of each parse tree is estimated. The 
generated parse trees are then used to extract a group of 
corresponding grammar rules with associated probabilities 
with the aim to define the relative frequency of each rule, 



which derives the most probable parse in the space against 
all candidate parses using deduction. 

The second main direction is dependency syntax and it 
looks at the syntactic structures as relations between words. 
This modern way of parsing attempts to capture the 
dependency between words instead of identifying the 
relations between words. The parser works by predicting a 
sequence of transitions until it approaches the final 
configuration, these transitions are learned from gold 
sequences of transitions in a treebank, which are then used 
to train a multi-class classifier. 

 
Fig. 6: Constituency tree for the sample question ‘Who 

is the director of “Inglourious Basterds”?’ using 
Stanford CoreNLP [2]. 

2.1.7 Chunking 
Chunking is another NLP process aiming to identify 
segments of text that are usually syntactically correlated 
such as noun phrases and verb phrases, and label them as a 
multi-token sequence. A chunker can replace the parser 
when a lightweight and shallow analysis is needed over the 
text. There is a variety of chunkers according to the use 
required, based on the definition of the relevant chunks of 
text. For example, as we can see in Figure 6, the noun 
phrase (NP) can be defined in the chunker as a consecutive 
sequence string that combines between one or more 
determiner(s), adjective(s), and noun(s). However, another 
application may require to be defined so as to include an 
extra prepositional phrase or relative clause. On the other 
hand, verb phrase chunkers may also differ from one 
application to another. For instance, the chunker may 
recognize modal verbs, infinitive verbs and negative verbs 
based on the application needs. Learning-based model 
chunkers can be used in cases that sophisticated text in 
specific domains is provided. The reliability of these 
chunkers is further improved by training them on each 
specific domain text as they will get better results than rule-
based chunkers. For instance, in the sentence “I bought the 
baby food” a rule-based chunker would not be able to 
distinguish whether the phrase “baby food” is a single NP 

which represents a compound noun or “the baby” and 
“food” are two independent NPs. 

Fig. 7: An example output of a Noun Phrase chunker. 

2.2 Knowledge extraction tasks 
After the low-level linguistic processing tasks where the 
main focus is on the syntactic analysis of the text, 
knowledge extraction tasks offer high-level analysis of the 
textual content as they focus on deriving semantics from 
text. These tasks are also fundamental for the automatic 
development of ontologies. 

Below, an overview of the most commonly used 
knowledge extraction tasks is provided.  

2.2.1 Co-reference Resolution 
This task is connected with the process of connecting the 
different ways or the different mentions of expressing the 
same entity within the text. For example, it can happen due 
to the use of pronouns for expressing an aforementioned 
entity.  

Different methods have been proposed to address this 
problem based on the complexity of the corpus. The first 
method is the rule-based approach, which filters the 
entities, taking into account their semantic information, and 
then determines the entities that have the highest 
probability to be coreferent. There are several co-reference 
resolution tools that are based on rules, such as ANNIE’s 
Orthomatcher [3], Stanford Coref tool [4] and SANAPHOR 
[5]. The latest improves the results from Stanford Coref by 
mapping the output to DBpedia ontology [6]. Other 
methods include the measurement of the distance between 
two entities and decision tree checks based on pre-defined 
attributes. 

2.2.2 Named Entity Recognition (NER) and 
Classification  
Named Entity Recognition is the extraction of Named 
Entities, such as persons, locations, or temporal 
expressions. The task is divided into the recognition of 
entities and the mapping to the relevant class, which is 
called classification. The NER and classification task can 
be applied using three different methods: rule-based 
approaches, machine learning approaches and hybrid 
approaches. Rule-based approaches which are the most 
widely used rely on gazetteers with regular expressions that 
cannot generate good results due to the ambiguity of the 
natural languages. On the other hand, machine learning 
approaches perform better results but require vast amounts 
of annotated training data. 



2.2.3 Entity Linking and Semantic Annotation 
The entity linking, or else the entity disambiguation, is part 
of the semantic annotation, which deals with the annotation 
of ambiguous entities in the text with a link to a unique 
entity in the ontology or Linked Open Data (LOD) 
resources such as DBpedia [7] [8], Freebase [9], YAGO 
[10]. Entity linking is the next module in the NLP pipeline 
that usually comes after the NER and classification. Entity 
linking is challenging since all the LOD resources include 
several mentions of the same entity in the knowledge base. 
So, there is a candidate selection module to determine all 
the possible entries for a given entity in the text, then a 
reference disambiguation module, which uses a 
probabilistic model to select the target entity with the right 
URI, based on some contextual data and ontology 
information. 

2.2.4 Term Extraction 
Unlike the NER task that focuses on identifying generic 
entities spanning all domains, the text extraction deals with 
entities that vary across domains and applications. There 
are different approaches for term extraction, however, they 
follow the same pipeline except for the way they rank the 
candidate term in each corpus. The initial module in the 
pipeline applies linguistic preprocessing tasks 
(tokenization, segmentation, POS tagging, and NP 
chunking) to recognize and filter the candidate terms, and 
then various grammar rules are applied to restrict chunks 
such as noun phrases and stop words. The last module is 
used to rank each term in the corpus, and it can use two 
approaches. The first approaches are the distributional 
knowledge approaches, which typically relies on 
frequency-based measures to estimate how important a 
certain term is to a document in a corpus. The latest are the 
contextual knowledge approaches, which use contextual 
knowledge to produce weights to help with the term 
ranking. 

2.2.5 Relation Extraction 
The relation extraction part comes after having the relevant 
terms and entities extracted from the text, to understand 
how these entities are related. There are different 
approaches for relation extraction, some of them are 
developed to focus on relations between lexical items, and 
others focus on relations between concepts. Similarly, with 
previous knowledge extraction tasks, there are several 
relation extraction methods: rule-based approaches, 
bootstrapping approaches (or else semi-supervised), 
supervised approaches and unsupervised approaches. 

3. KNOWLEDGE EXTRACTION 
TOOLS 
In this section, we present several state-of-the-art 
knowledge extraction tools performing knowledge 
extraction and ontology population. 

3.1 FRED 
FRED [3] [4] is an online tool that implements a method 
for ontology learning and population in the Semantic Web. 
The major difference compared with existing approaches is 
that it does not rely on machine learning methods. Being 
deployed as a web service means that it minimizes 
computing time is of primary importance. It implements a 
modular, highly interoperable and customizable 
architecture aiming to ensure reusability by other 
applications and extensibility.  

The FRED framework is constituted by four main 
components:  

● The Boxer performs deep parsing of natural 
language text including frame-detection and 
provides an output in Discourse Representation 
Structure (DRS).  

● The communication component realizes a 
lightweight HTTP server based on Restful 
architecture, which is in charge of publicly 
exposing APIs for querying the system. It takes a 
language text and some optional parameters as 
input and returns an ontology in OWL/RDF 
construct that is internally well-connected and 
linked-data-ready. 

● The refactoring component transforms Boxer 
output in a form to be passed to the re-engineering 
component, which is responsible of implementing 
the semantic transformation from the domain of 
the Discourse Representation Theory to OWL;  

● The re-engineering component implements all the 
required translation and heuristic rules.  

The first component is implemented in Prolog and last 
three components in Python. 

Fig. 8: An overview of the FRED architecture. 
 
 



Fig. 9: FRED RDF graph for the sentence “Paul 
Newman hit the window with an open hand”. 

3.2 LODifier 
LODifier [13] is an approach that combines deep semantic 
analysis with NER, word sense disambiguation and 
controlled Semantic Web vocabularies in order to extract 
Named Entities and relations between them from text and 
to convert them into an RDF representation which is linked 
to DBpedia and WordNet [14].  

After tokenization, mentions of entities in the input text are 
recognized using the NER system Wikifier and mapped 
onto DBpedia URIs. Relations between these entities are 
detected using the statistical parser C&C [15] and the 
semantics construction toolkit Boxer [16], which generates 
discourse representation structures (DRS). Thereafter, the 
text is lemmatized and words are disambiguated to get 

WordNet mappings. The RDF graph is then created by 
further processing the Boxer DRS output, transforming it 
into triples. Finally, it is enriched with the DBpedia URIs 
(to link its entities to the LOD cloud) and the WordNet 
sense URIs (to do the same for the relations).  

3.3 KNEWS 
KNEWS [17] is a pipeline of NLP tools that receives as 
input natural language text and returns as output knowledge 
in a machine readable format. More specifically, the tool’s 
output can be frame-based knowledge in the form of RDF 
triples or XML, including the word-level alignment with 
the surface form, as well as first-order logical formulae.  

The main components of the KNEWS pipeline system are:  

● a semantic parser  

● a word sense disambiguation module and an entity 
linking module working together. 

KNEWS works by running these components separately on 
a text, then it aligns the output of the semantic parser to the 
output of the other two modules (see Figure 9).  

3.3.1 Semantic Parsing 
The semantic parsing module receives text as input and 
provides a formal representation of text’s meaning as 
output. To succeed this, KNEWS employs the C&C tools 
and the Boxer. The C&C tools [15] are a pipeline of 
statistical NLP tools including a tokenizer, a lemmatizer, 
Named Entity and POS tagger, and a parser that creates a 
Combinatory Categorial Grammar (CCG) representation of 
the natural language syntax. The Boxer [16] is a rule-based 
system that builds an abstract meaning representation on 
top of the CCG analysis. Such structures contain, among 
other information, predicates representing the roles of the 
entities with respect to the detected events, e.g., event(A), 
entity(B), agent(A,B) to represent B playing the role of the 
agent of the event A. 

3.3.2 Word Sense Disambiguation and Entity 
Linking  
KNEWS uses WordNet to represent concepts and events, 
DBpedia to represent Named Entities, and FrameNet’s 
frames [18] to represent events, integrating the mapping 
with the WordNet synsets provided by FrameBase [19]. 
The thematic roles used by Boxer is taken from VerbNet 
[20], while KNEWS employs the mapping provided by 
SemLinks [21] to link the thematic roles to FrameNet roles. 
By linking the discourse referents representing concepts to 
WordNet synsets, entities to DBpedia and events to 
FrameNet frames, KNEWS is able to extract semantic 
representations from natural language text and link them to 
Linked Open Data knowledge bases, which is important in 
order to provide knowledge representation and automatic 
reasoning. 

Fig. 10: An overview of the LODifier architecture. 



3.3.3 Outputs 
In the output, KNEWS can provide three output modes:   

● Frame-based Semantics: Frame instances are 
sets of RDF triples that contain a unique identifier, 
the type of the frame, the thematic roles involved 
in the instance, and the concepts or entities that fill 
the roles.  

● Word-aligned Semantics. The word-aligned 
semantics output mode is similar to the previous 
one with the difference that it contains as 
additional information the alignment with the text.  

● First-order Logic. In the third output mode, 
KNEWS is able to generate first-order logic 
formulae representing the natural language text 
given as input.  

 

Fig. 12: An example of frame instance, extracted from 
the sentence “A robot is driving the car.” 

3.4 SlugNERDS 
The Slugbot’s Named Entity Recognition for dialogue 
Systems (SlugNERDS) tool [22] is a Named Entity 
Recognition (NER) and Named Entity Linking (NEL) tool 
which leverages the Google Knowledge Graph API in 

conjunction with the Schema.org taxonomy to identify 
known entities. The tool is optimized with respect to noisy 
open domain conversation and is able to perform both 
discourse and web-based entity linking. 

The SlugNERDS pipeline consists of three modules:  

● Entity Segmentation  

● Entity Classification 

[1] Entity Linking 

Entity Segmentation and Entity Classification perform 
Name Entity Recognition while Entity Linking works on 
the recognized entity. 

3.4.1 Entity Segmentation 
In order to refine the list of candidate strings to query the 
authors break the text into reasonable chunks. To do this, 
they utilize a two-pass approach. First, a constituency tree 
is constructed using Stanford CoreNLP [2] and a candidate 
pool is built by collapsing each of the noun phrases, verb 
phrases, and sentences in the tree. Additionally, sequential 
noun clusters are collapsed from the dependency parse 
which have not yet been associated with an entity to create 
a secondary pool of candidates, so as to include more 
candidate strings that are ignored by shallow parsing. Last, 
single pronouns are excluded such as I and me unless they 
seem extremely contextually relevant.  

 
Fig. 14: A sample of a constituency tree.  

Fig. 11: An overview of the KNEWS architecture 

Fig. 13: An overview of the SlugNERDS pipeline. 



3.4.2 Entity Classification 
Once candidate phrases are collected from the entity 
segmentation phase, each of these phrases are sent as 
queries in the Google Knowledge Graph API and the top N 
relevant entities in Candidate Pooling are gathered.  

Sometimes it is possible for an entity candidate returned by 
the query to have the same exact title with different entity 
types. For example, there are 5 entity candidates with the 
title “Star Wars: Episode III - Revenge Of The Sith” each 
with a different entity type (Movie, Video Game, Book, 
MusicAlbum, and BookSeries).  

Since the entities returned by the Google Knowledge Graph 
may not be an exact match to the query, it gives more 
flexibility, while introducing some noise. Furthermore, if a 
user is expected to talk about certain entity types according 
to the context, increased value is placed on certain entities 
while penalizing others. Based on these observations, the 
authors perform a scoring algorithm that maximizes the 
performance in the Candidate Ranking phase.  

Once the entities are all scored, the list is re-ranked and 
only the top ranked entity for each node are considered, 
while also pruning away nodes whose top scoring entity 
was less than a certain threshold (empirically driven). 
Moreover, overlapping nodes that have candidates are 
merged. In the last stage, the query/candidate is synced to 
the internal discourse state representation.  

3.4.3 Entity Linking  
Named Entity Linking consists of two phases, Web Source 
Linking and Discourse Linking. Web Source Linking 
performs the linking of a known entity to existing resources 

on the web while Discourse Linking is focused on the 
linking of each mention of the entity within the input to the 
same discourse entity in the internal representation. 

3.5 Text2Onto 
Text2Onto [23] is a framework for ontology learning from 
natural language text, which combines machine learning 
with basic linguistic processing (such as tokenization or 
lemmatizing and shallow parsing) approaches. Moreover, it 
is based on the GATE framework for the creation of the 
linguistic algorithms and models, which provides increased 
flexibility to the user. Linguistic preprocessing begins with 
the tokenization and the sentence splitting. The outcome 
tokens of this process serve as an input for a POS tagger 
which assigns appropriate syntactic categories to all tokens. 
Finally, lemmatizing or stemming is done by a 
morphological analyzer and a stemmer respectively to 
extract patterns.  

 
Fig. 16: An overview of the KNEWS architecture 

Fig. 15: An annotated conversation is presented based on Slugbot tool 



After the basic linguistic preprocessing is done, a JAPE 
transducer runs over the annotated corpus in order to match 
a set of particular patterns with the ontology learning 
algorithms. Whereas the left-hand side of each JAPE 
pattern defines a regular expression over existing 
annotations, the right-hand side describes the new 
annotations to be created. For Text2Onto we developed 
JAPE patterns for both shallow parsing and the 
identification of modeling primitives, i.e. concepts, 
instances and different types of relations. Text2Onto is 
considered to be the successor of TextToOnto [24], which 
lacks the flexibility of combining different algorithms and 
does not facilitate any interactions with the user, which 
both features have been included in  the Text2Onto.  

Since both types of patterns are language specific, different 
sets of patterns for shallow parsing and ontology extraction 
have to be defined for each language. Because of this and 
due to the fact that particular processing components for 
GATE have to be available for each language, Text2Onto 
currently supports ontology learning only from English 
texts while it is currently expanded for Spanish and 
German language. 

3.6 SPRAT 
The SPRAT (Semantic Pattern Recognition and Annotation 
Tool) [25] is an ontology generation and population 
system, that enables the user to create an ontology from 
scratch or modify an existing one. The system generates 
new knowledge by linking text to ontologies based on 
lexico-syntactic patterns.  

Its architecture is composed of a number of linguistic pre-
processing components (based on GATE) followed by a set 
of gazetteer lists and the JAPE transducers. More 
specifically, a tokenizer divides the text into tokens, the 
sentence splitter divides the text into sentences, the POS-
tagger adds POS information to tokens, a morphological 
analyzer adds morphological information (root, lemma etc.) 
to tokens and a NP chunker divides the text into noun 
phrase chunks. 

Thereafter, gazetteers look up various items in lists, 
OntoRootGazetteer (optional) looks up items from the 
ontology and matches them with the text, based on root 
forms and JAPE transducers annotates text and adds new 
items to the ontology. 

It differs from Text2Onto as it does not rely on statistical 
clustering for relation extraction, and it uses more lexicon-
syntactic patterns for extracting entities and relations from 
text. The system accuracy can be improved by refining the 
patterns and linking it with other NLP resources, such as 
WordNet conceptual-semantic categories and lexical 
relations. 

3.7 LUIS 
The advance of conversational chatbots increased the need 
for natural language understanding. Due to this, several 
interfaces has been created lately to accommodate this 

need. Microsoft LUIS.ai or LUIS.ai or Language 
Understanding Intelligent Services [26] is an example of 
these natural language understanding interfaces.  

LUIS is a web-based tool for natural language analysis that 
can be trained for a particular domain. It utilizes machine 
learning based methods to process and analyze textual 
utterances. To be able to apply machine learning methods, 
LUIS breaks down the utterances into smaller pieces called 
tokens, by a process called tokenization. Then, it represents 
the extracted semantic information of an utterance as 
intents and entities. The intent represents the purpose of an 
utterance while the entities represent the specific details 
and information. An intent represents what the user wants 
to achieve with the utterance, the overall goal. The intent is 
heavily influenced by the context and the domain. An intent 
of the utterance “I want to go to Germany!” could be that 
the user wants to book a flight.  

 
Fig. 17: Example JSON response for the utterance 

“start tracking a run” 

However, the same utterance could also mean that the user 
needs a car or buy a train ticket. Furthermore, every 
important fact of a sentence is mapped to an entity. 
Examples of entities are dates, locations or specific 
products. In the previously mentioned utterance, “I want to 
go to Germany!”, the entity is Germany. LUIS lets the user 
create its own sets of intents and entities and presents a 
decimal value between 0 and 1 indicating how sure it is that 
the identified intent is the actual intent of an utterance. 

4. CONCLUSION  
This article was attempted to approach the issue of 
capturing complex knowledge statements from natural 
language, which is a challenging problem applying in the 



domain of the Natural Language Processing (NLP). More 
specifically, the production of quality linked data and 
ontologies from natural language can enhance the accuracy 
of the question answering and machine reading 
applications. Combining knowledge and language 
processing produces a pipeline that is capable of extracting 
knowledge in structured forms, to generate quality triples 
for the Semantic Web. This requires both linguistic 
processing and knowledge extraction tasks. The linguistic 
tasks are mainly useful in the stage of text pre-processing 
and the knowledge extraction tasks are proved useful for 
text processing aiming to generate a form that can be used 
to extract the triples without losing semantics.  

More specifically, the article provides an overview of the 
language and knowledge processing pipeline for knowledge 
extraction. The pipeline consists of a series of linguistic 
processing and knowledge extraction tasks/components that 
can be applied sequentially or simultaneously. The 
linguistic processing components are used for cleaning and 
preparing the text before sending it to the knowledge 
extraction components. These include stop word handling, 
tokenization, segmentation, Part Of Speech (POS) tagging, 
stemming and lemmatization, parsing and chunking. This 
low-level linguistic processing is followed by the 
knowledge extraction tasks. These include co-reference 
resolution, named entity recognition and classification, 
entity linking and semantic annotation, and finally term and 
relation extraction. 

It is following the concise presentation of several state-of-
the-art tools that perform knowledge extraction and 
ontology population. These tools include FRED, LODifier, 
KNEWS, SlugNERDS, Text2Onto, SPRAT, and LUIS.  
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