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Abstract—Process automation is enabling a level of accuracy
and productivity that goes beyond human ability, and one critical
area where automation is making a big difference is quality
control. In this paper, we describe a semantic segmentation
solution aiming at detecting the presence of quality control
elements in surgery toolboxes prepared by the sterilization
unit of a hospital. In order to reduce the time required to
prepare pixel-level ground truth, this work focuses on the use of
weakly-supervised annotations (scribbles). Moreover, our solution
integrates a clustering approach into a semantic segmentation
network, thereby reducing the negative effects caused by weakly-
supervised annotations. The paper describes the design process
and reports on the results obtained.

Index Terms—Quality Control, Object Recognition, Weakly-
Supervised Semantic Segmentation

I. INTRODUCTION

Process automation is enabling a level of accuracy and pro-
ductivity that goes beyond human ability, and one critical area
where automation is making a big difference is quality control.
Machine vision and deep learning are nowadays changing the
game for this kind of application. Generically speaking, these
technologies enable inspection automation for every product
on the line, and this means consistent and accurate results,
and, correspondingly, direct contribution to profits from the
reduction of the percentage of failing operations.

Furthermore, enabling non-contact, thus non-destructive in-
spection, optical techniques are especially well suited when
the correct manipulation of the object under inspection is
crucial. This is precisely the inspection problem that we deal
with in this paper: it consists in the detection of a number of
control elements that the sterilization unit of a hospital places
in boxes and bags containing surgical tools that surgeons and
nurses have to be supplied with prior to starting surgery. These
elements provide evidence that the tools have been properly
submitted to the required cleaning processes. Figure 1 shows,
from left to right and top to bottom, the six kinds of elements
to be detected for this application: the label/bar code used to
track a box/bag of tools, the yellowish seal, the three kinds
of paper tape which changes to the black-, blue- and pink-
stripped appearance when the box/bag has been inside the
autoclave, and an internal filter which is placed inside some
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Figure 1. Objects to be detected: label, seal, 3 kinds of paper tape (black-,
blue- and pink-stripped) and the internal filter. As can be observed in the
top-left case, one can find several of these items in the same image.

boxes and creates the white-dotted texture that can be observed
(instead of black-dotted when the filter is not inside).

In a previous work [1], we developed an arbitrarily-oriented
object detector based on DCNNs for oriented bounding boxes
regression. Despite the general good performance exhibited by
this detector (as already reported), when lots of objects appear
in a small area, bounding boxes-based object recognition
tends to degrade in performance, and also, most importantly,
detection results become less informative and even messy.
Due to this reason, we have considered the adoption of an
alternative semantic segmentation approach to detect targets at
the pixel level, increasing thus the localization accuracy. This
in particular means the availability of pixel-level manual anno-
tation of objects for the training set, what is a very high time-
consuming task, especially when the dataset comprises a large
number of images. In this regard, in this work, we address
the development of the detector from a weakly-supervised
learning perspective, using simple scribbles to simplify the
preparation of the training set (useful during exploitation stage
when updates have to be performed). An example on the use
of scribbles as ground truth data is shown in Fig. 2 [left].

Unlike previous works such as [2]–[4], that perform weakly-
supervised image segmentation through a multi-level network,
our method employs an end-to-end architecture and a multi-
task joint training strategy. The main contributions of this work
are described in Section II, namely: (1) we propose a centroid
loss function for weakly-supervised semantic segmentation
and evaluate its performance for our task; (2) we design a
Mean Square Error (MSE)-based regularization term based on
the predicted centroids in order to improve the segmentation



Figure 2. Illustration of the pseudo-masks generation process from scribbles-
based ground truth and superpixels: [left] scribbles for the label and internal
filter classes, [middle] result of the SLICO superpixels algorithm, and [right]
resulting pseudo-mask.

performance. To finish, the experimental results reported in
Section III show that our approach achieves good performance
for the intended task.

II. METHODOLOGY

In this section, we will discuss the methodology underlying
our approach. For a start, in Section II-A, we refer to the
generation of pseudo-masks for training on the basis of the out-
put of a superpixel-segmentation algorithm and scribbles. The
architecture of the DCNN is described next in Section II-B.
Sections II-C and II-D discuss on the use of, respectively, the
partial cross entropy loss and the centroid loss functions. To
finish, the final loss function is presented in Section II-E.

A. Pseudo-mask Generation by means of Superpixels

Figure 2[left] illustrates the use of scribbles for image anno-
tation, where the red scribble denotes the label class, the blue
scribble is for the internal filter class and the black scribbles
correspond to background. It is clear that scribbles already la-
bel some pixels of each class, which could be used for training.
However, unfortunately, the performance of the network in this
case turns out to be very poor. Inspired by ScribbleSup [5], to
address the latter problem we generate training pseudo-masks
using the superpixels produced by Adaptive-SLIC (SLICO) [6]
(see Fig. 2[middle]), so that, taking advantage of the good
boundary adherence of superpixels, training pixels belonging
to a superpixel intersecting with a scribble are labelled with
the same class as the scribble (see Fig. 2[right], where green
pixels denote the background, red pixels are for the label class,
blue pixels are for the internal filter class and the black pixels
denote unlabelled data, which are ignored during training).

B. Network Architecture

In this work, similarly to [7], we embed attention mod-
ules in U-Net, a popular encoder-decoder DCNN devised for
biomedical images, to improve its ability to segment small
targets. In more detail, attention gates (AGs) are integrated
into the decoding part of U-Net, where, as shown in Fig. 3,
an AG is fed by two input tensors, one from the encoder and
the other from the decoder. Unlike the Squeeze-and-Excitation
(SE) block of [8], which obtains attention weights for filter
selection, we use AGs to compute attention weights for pixels.

Additionally, we integrate in our Attention U-Net (AUN)
a sub-net to compute the centroid loss (see Section II-D). In
comparison with AUN, the network of Fig. 3: (1) handles two

Figure 3. Schemtic description of the Centroids AUN model. Size decreases
gradually by a factor of 2 at each scale in the encoding part, and increases
by the same factor in the decoding part. In the latter, we use AGs to help the
network focus on areas of high-response in the feature maps. The Conv Skip
block is the skip connection of ResNet [9]. In this figure, N is the batch size,
C is the number of classes and M is the clustering feature space dimension.

sorts of ground truth during training, scribbles Yscr to train
the sub-net for proper centroids prediction and pseudo-masks
Yseg for segmentation training; and (2) produces two outputs,
centroids Pcen and the image segmentation Pseg. In order to
avoid massive computation and save memory, we embed the
sub-net in the intermediate layers of the network, instead of
at the end. As shown in Fig. 3, the sub-net comprises three
blocks, and every block includes a fully connected layer, a
batchnorm layer and a ReLU activation layer.

C. Partial Cross Entropy Loss Function

Given a C-class problem and a training set Ω, comprising a
subset ΩL of labelled pixels and a set ΩU of unlabeled pixels,
the Partial Cross Entropy Loss LpCE, widely used in weakly-
supervised image segmentation, computes the cross entropy
only for labeled pixels p ∈ ΩL, ignoring p ∈ ΩU :

LpCE =

C∑
c=1

∑
p∈ΩL

−yg(p),c log ys(p),c , (1)

where yg(p),c ∈ {0, 1} is the ground truth and ys(p),c is the
segmentation result. In our case, and for LpCE, we define Ω

(1)
L

as the pixels labelled in pseudo-masks, while ys(p),c is as
supplied by the softmax final network layer.

D. Centroid Loss Function

Although the performance of the network when trained
using pseudo-masks is not bad, we have noticed that seg-
mentation performance depends on the quality of the pseudo-
masks and hence on the quality of the superpixels, i.e. how
they adhere to class boundaries. The Centroid Loss function is
introduced in this section precisely to avoid this dependence
and improve segmentation results.



To this end, this loss function actually implements a clus-
tering process similar to K-means. Briefly speaking, K-means
iteratively calculates a set of centroids µc for the considered
number of clusters/classes, associating samples to closest
clusters in feature space, so as to minimize the intra-class
variance until convergence. Contrarily to other CNN-based
clustering approaches, which reformulate K-means as a neural
network optimizing the intra-class variance loss by means of
a backpropagation-style scheme [10], [11], in this work we
define the centroid loss Lcen as a partial cross-entropy loss
considering in this case Ω

(2)
L as the set of pixels coinciding

with the scribbles:

Lcen =

C∑
c=1

∑
p∈Ω

(2)
L

−yg(p),c log y′s(p),c (2)

y′s(p),c =
exp(dp,c)

C∑
c′=1

exp(dp,c′)

, dp,c =
||fp − µc||22

C∑
c′=1

||fp − µc′ ||22

where: (1) fp is the feature of pixel p and is obtained from the
last convolutional layer of the encoding part of the network and
(2) µc is the centroid predicted for class c, i.e. µc ∈ Pcen (see
Fig. 3 for 1 and 2). With equation 2, we transform the process
of minimizing the distances from samples to centroids to a
process of searching for the clustering with highest probability
thanks to the softmax formulation adopted.

E. Full Loss Function

Since LpCE only applies to pixels labelled in the pseudo-
mask and Lcen is also restricted to a subset of image pixels,
namely pixels coinciding with scribbles, we add a third loss
term in the form of a normalized MSE loss Lmse as a
regularization term involving all pixels p for which a class
label is predicted Ω

(3)
L . Similarly to Lcen, we define Lmse in

terms of softmax-normalized Euclidean distances:

Lmse =

C∑
c=1

∑
p∈Ω

(3)
L

dp,c

N · C · |Ω(3)
L |

(3)

where N is the batch size and |A| stands for the cardinality
of set A.

In the end, the complete loss function, to be calculated for
every image in the training batch, is:

L = LpCE + λcenLcen + λmseLmse (4)

where λcen and λmse are trade-off constants.

III. EXPERIMENTAL RESULTS

The following sections describe the experimental setup
(Section III-A) and the results obtained through several exper-
iments aiming at exploring the performance of the semantic
segmentation approach described in this paper (Section III-B).

Table I
MIOU FOR DIFFERENT LOSS FUNCTIONS

LpCE Lcen Lmse mIOU
E1 X 0.6770
E2 X X 0.7594
E3 X X X 0.7679

A. Experimental Setup

We have employed a dataset comprising 484 images, which,
as usual, has been split in a training set (2/3) and a testing
set (1/3). The scribble annotations have been generated by
means of 10-pixel brushstrokes, avoiding the annotation of
object boundaries or ambiguous regions. To generate the
pseudo-masks, we have configured SLICO to produce 100
superpixels/image. Performance results are reported in the next
section as the mean Intersection Over Union (mIOU), using
the fully supervised ground truth. All experiments have been
conducted within the Pytorch framework, running Ubuntu 64-
bit on a desktop PC fitted with a 2.9GHz 12-core CPU with
32 Gb RAM and an NVIDIA GeForce RTX 2080 Ti GPU. In
all the experiments, we set constants λcen and λmse to 1. The
batch size N is 6 and the input images are resized to 512×512
pixels, which is the best configuration for our GPU.

B. Performance Results

To illustrate the performance of our approach, we run
experiments E1-3 described in Table I, where we are adding
terms to the loss function until reaching the form of equation 4.
In all cases, the dimension of feature space during clustering
M is set to 7 (experimentally found).

a) Effect of Centroid Loss: Figure 4[left] plots LpCE
and Lcen until epoch 100. As can be observed, the network
manages to minimize Lcen by a large margin in both E2 and
E3. Regarding LpCE, curve LpCE for E1 is always above the
other two curves for E2-3, what means that the centroid loss
Lcen contributes positively during training, decreasing LpCE.
Additionally, the mIOU curves of E2 and E3 are above the
mIOU curve of E1, so that Lcen leads to better performance
also for the test set. Final mIOU results confirming this trend
can be found in Table I, with mIOU 0.7594 and 0.7679 for,
respectively, E2 and E3, and 0.6770 for E1.

b) Effect of MSE regularization: Figure 4[right] shows
the change of Lmse during training. Unlike LpCE and Lcen
curves for E1-3, which decrease notoriously during training,
Lmse exhibits a trend from significant fluctuation to gradual sta-
bility without decreasing. The reason is that, at the beginning
of the training, the network predictions are mostly erroneous,
what leads to the curve to fluctuate dramatically. But, as the
training progresses, the network predictions improve and the
Lmse becomes more stable. As a result, E3 obtains the highest
mIOU (0.7679), as shown in Table I.

c) Qualitative comparison: To finish, Fig. 5 compares
visually the scribbles and pseudo-masks of departure, and the
resulting segmentations for two images and cases E1-3. As can
be seen, the centroid loss can decrease the negative effect of a
noisy labelling in the respective pseudo-masks, outperforming



Figure 4. Training curves during E1-3: [right] loss value for LpCE and Lcen, [middle] change in mIOU for the test set, and [right] Lmse for E3

scribbles & superpixels pseudo-mask E1 E2 E3
Figure 5. Examples of segmentation results: [1st col.] scribble ground truth and superpixel segmentation; [2nd col.] resulting pseudo-mask, where the black
pixels denote unlabeled data, orange pixels denote the background class, blue pixels denote the black-stripped paper tape class, red pixels are for the label
class and light blue for the internal filter class; [3rd-5th col.] segmentation results for the respective cases.

a network trained only by means of LpCE, as shown for E1 and
E2 in Fig. 5. Segmentation results for E3, on the other side,
show that the MSE regularization term contributes to a better
adherence of the resulting segmentations to class boundaries.

IV. CONCLUSION AND FUTURE WORK

We have proposed a weakly-supervised segmentation ap-
proach based on AUN for an object recognition application.
The loss function comprises three terms based on convenient
scribble annotations, which are jointly optimized within an
end-to-end model. As has been reported in the experimental
results section, our approach achieves a competitive perfor-
mance at a low cost as for ground truth labelling. As for future
work, we plan to follow the same research line and develop
other types of weak annotations and training strategies, so as
to achieve higher performance and simpler annotations.
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“SLIC Superpixels Compared to State-of-the-Art Superpixel Methods,”
PAMI, vol. 34, no. 11, pp. 2274–2282, Nov 2012.

[7] O. Oktay et al., “Attention U-net: Learning where to look for
the pancreas,” arXiv, 2018. [Online]. Available: http://arxiv.org/
abs/1804.03999

[8] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018, pp. 7132–7141.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[10] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning
approach for deep face recognition,” in ECCV, 2016, pp. 499–515.

[11] X. Peng, J. T. Zhou, and H. Zhu, “k-meansNet: When k-means
meets differentiable programming,” arXiv, 2019. [Online]. Available:
http://arxiv.org/abs/1808.07292


