Dataset Open Access

Dataset from the ISMIR2020 article "Multilingual Music Genre Embeddings for Effective Cross-Lingual Music Item Annotation"

Elena V. Epure; Guillaume Salha; Romain Hennequin


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/21671665-f203-4de9-bcae-9afb6913810d/data.zip"
      }, 
      "checksum": "md5:a9bf43340a3c180e1ac4d78151e205a8", 
      "bucket": "21671665-f203-4de9-bcae-9afb6913810d", 
      "key": "data.zip", 
      "type": "zip", 
      "size": 446671652
    }
  ], 
  "owners": [
    104267
  ], 
  "doi": "10.5281/zenodo.4247202", 
  "stats": {
    "version_unique_downloads": 6.0, 
    "unique_views": 33.0, 
    "views": 38.0, 
    "version_views": 48.0, 
    "unique_downloads": 5.0, 
    "version_unique_views": 41.0, 
    "volume": 2680029912.0, 
    "version_downloads": 7.0, 
    "downloads": 6.0, 
    "version_volume": 3126355038.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4247202", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4247189", 
    "bucket": "https://zenodo.org/api/files/21671665-f203-4de9-bcae-9afb6913810d", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4247189.svg", 
    "html": "https://zenodo.org/record/4247202", 
    "latest_html": "https://zenodo.org/record/4247202", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4247202.svg", 
    "latest": "https://zenodo.org/api/records/4247202"
  }, 
  "conceptdoi": "10.5281/zenodo.4247189", 
  "created": "2020-11-05T13:24:17.369735+00:00", 
  "updated": "2020-11-06T00:27:03.283852+00:00", 
  "conceptrecid": "4247189", 
  "revision": 2, 
  "id": 4247202, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4247202", 
    "description": "<p>We release the data required to reproduce the cross-lingual music genre translation experiments from the article&nbsp;<strong><em>Multilingual Music Genre Embeddings for Effective Cross-Lingual Music Item Annotation</em></strong>&nbsp;presented at the&nbsp;<a href=\"https://ismir.github.io/ISMIR2020/\">ISMIR 2020</a>&nbsp;conference.</p>\n\n<p>More information about this&nbsp;data&nbsp;and how it should be used in the experiments can be found&nbsp;in the GitHub repository <a href=\"http://github.com/deezer/MultilingualMusicGenreEmbedding\">deezer/MultilingualMusicGenreEmbedding</a>.</p>\n\n<p>Please cite our paper if you use the code or data in your work.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Dataset from the ISMIR2020 article \"Multilingual Music Genre Embeddings for Effective Cross-Lingual Music Item Annotation\"", 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 1, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4247189"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4247202"
          }
        }
      ]
    }, 
    "keywords": [
      "Deezer dataset", 
      "Music genre embeddings", 
      "Multilingualism"
    ], 
    "publication_date": "2020-10-11", 
    "creators": [
      {
        "affiliation": "Deezer Research", 
        "name": "Elena V. Epure"
      }, 
      {
        "affiliation": "Deezer Research", 
        "name": "Guillaume Salha"
      }, 
      {
        "affiliation": "Deezer Research", 
        "name": "Romain Hennequin"
      }
    ], 
    "meeting": {
      "acronym": "ISMIR", 
      "url": "https://www.ismir2020.net", 
      "dates": "11-16 October 2020", 
      "title": "The 21st International Society for Music Information Retrieval Conference"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4247189", 
        "relation": "isVersionOf"
      }
    ]
  }
}
48
7
views
downloads
All versions This version
Views 4838
Downloads 76
Data volume 3.1 GB2.7 GB
Unique views 4133
Unique downloads 65

Share

Cite as