Conference paper Open Access

Video Analysis for Interactive Story Creation: The Sandmännchen Showcase

Zwicklbauer, Miggi; Lamm, Willy; Gordon, Martin; Apostolidis, Konstantinos; Philipp, Basil; Mezaris, Vasileios


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c5e36eb3-7008-4cb6-9745-539b9101bc02/acmmm2020_ai4tv_preprint.pdf"
      }, 
      "checksum": "md5:02009bb5530b5c1196de01b150bd7976", 
      "bucket": "c5e36eb3-7008-4cb6-9745-539b9101bc02", 
      "key": "acmmm2020_ai4tv_preprint.pdf", 
      "type": "pdf", 
      "size": 1820121
    }
  ], 
  "owners": [
    22750
  ], 
  "doi": "10.1145/3422839.3423061", 
  "stats": {
    "version_unique_downloads": 83.0, 
    "unique_views": 341.0, 
    "views": 343.0, 
    "version_views": 343.0, 
    "unique_downloads": 83.0, 
    "version_unique_views": 341.0, 
    "volume": 156530406.0, 
    "version_downloads": 86.0, 
    "downloads": 86.0, 
    "version_volume": 156530406.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1145/3422839.3423061", 
    "latest_html": "https://zenodo.org/record/4244508", 
    "bucket": "https://zenodo.org/api/files/c5e36eb3-7008-4cb6-9745-539b9101bc02", 
    "badge": "https://zenodo.org/badge/doi/10.1145/3422839.3423061.svg", 
    "html": "https://zenodo.org/record/4244508", 
    "latest": "https://zenodo.org/api/records/4244508"
  }, 
  "created": "2020-11-04T14:46:39.372097+00:00", 
  "updated": "2020-11-05T00:26:57.118259+00:00", 
  "conceptrecid": "4244507", 
  "revision": 3, 
  "id": 4244508, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1145/3422839.3423061", 
    "description": "<p>This paper presents a method to interactively create a new Sandm&auml;nnchen story. We built an application which is deployed on a smart speaker, interacts with a user, selects appropriate segments from a database of Sandm&auml;nnchen episodes and combines them to generate a new story that is compatible with the user requests. The underlying video analysis technologies are presented and evaluated. We additionally showcase example results from using the complete application, as a proof of concept.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Video Analysis for Interactive Story Creation: The Sandm\u00e4nnchen Showcase", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4244507"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4244508"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "retv-h2020"
      }
    ], 
    "grants": [
      {
        "code": "780656", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::780656"
        }, 
        "title": "Enhancing and Re-Purposing TV Content for Trans-Vector Engagement", 
        "acronym": "ReTV", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Machine learning", 
      "Sandm\u00e4nnchen", 
      "video analysis", 
      "smart speaker"
    ], 
    "publication_date": "2020-10-12", 
    "creators": [
      {
        "affiliation": "Rundfunk Berlin-Brandenburg", 
        "name": "Zwicklbauer, Miggi"
      }, 
      {
        "affiliation": "Rundfunk Berlin-Brandenburg", 
        "name": "Lamm, Willy"
      }, 
      {
        "affiliation": "Rundfunk Berlin-Brandenburg", 
        "name": "Gordon, Martin"
      }, 
      {
        "affiliation": "CERTH-ITI", 
        "name": "Apostolidis, Konstantinos"
      }, 
      {
        "affiliation": "Genistat", 
        "name": "Philipp, Basil"
      }, 
      {
        "affiliation": "CERTH-ITI", 
        "name": "Mezaris, Vasileios"
      }
    ], 
    "meeting": {
      "acronym": "AI4TV @ ACM MM 2020", 
      "dates": "Oct. 2020.", 
      "title": "AI4TV workshop at ACM Multimedia 2020"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
343
86
views
downloads
Views 343
Downloads 86
Data volume 156.5 MB
Unique views 341
Unique downloads 83

Share

Cite as