Conference paper Open Access
Zwicklbauer, Miggi; Lamm, Willy; Gordon, Martin; Apostolidis, Konstantinos; Philipp, Basil; Mezaris, Vasileios
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/4244508</identifier> <creators> <creator> <creatorName>Zwicklbauer, Miggi</creatorName> <givenName>Miggi</givenName> <familyName>Zwicklbauer</familyName> <affiliation>Rundfunk Berlin-Brandenburg</affiliation> </creator> <creator> <creatorName>Lamm, Willy</creatorName> <givenName>Willy</givenName> <familyName>Lamm</familyName> <affiliation>Rundfunk Berlin-Brandenburg</affiliation> </creator> <creator> <creatorName>Gordon, Martin</creatorName> <givenName>Martin</givenName> <familyName>Gordon</familyName> <affiliation>Rundfunk Berlin-Brandenburg</affiliation> </creator> <creator> <creatorName>Apostolidis, Konstantinos</creatorName> <givenName>Konstantinos</givenName> <familyName>Apostolidis</familyName> <affiliation>CERTH-ITI</affiliation> </creator> <creator> <creatorName>Philipp, Basil</creatorName> <givenName>Basil</givenName> <familyName>Philipp</familyName> <affiliation>Genistat</affiliation> </creator> <creator> <creatorName>Mezaris, Vasileios</creatorName> <givenName>Vasileios</givenName> <familyName>Mezaris</familyName> <affiliation>CERTH-ITI</affiliation> </creator> </creators> <titles> <title>Video Analysis for Interactive Story Creation: The Sandmännchen Showcase</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Machine learning</subject> <subject>Sandmännchen</subject> <subject>video analysis</subject> <subject>smart speaker</subject> </subjects> <dates> <date dateType="Issued">2020-10-12</date> </dates> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4244508</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3422839.3423061</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/retv-h2020</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This paper presents a method to interactively create a new Sandm&auml;nnchen story. We built an application which is deployed on a smart speaker, interacts with a user, selects appropriate segments from a database of Sandm&auml;nnchen episodes and combines them to generate a new story that is compatible with the user requests. The underlying video analysis technologies are presented and evaluated. We additionally showcase example results from using the complete application, as a proof of concept.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780656/">780656</awardNumber> <awardTitle>Enhancing and Re-Purposing TV Content for Trans-Vector Engagement</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 342 |
Downloads | 86 |
Data volume | 156.5 MB |
Unique views | 340 |
Unique downloads | 83 |