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A B S T R A C T

The city of Santiago experiences extreme pollution events during winter due to particulate matter and the
associated health impact depends on the exposure to this pollutant, particularly to PM2.5. We present and apply a
method that estimates the exposure of users of the public transport system of Santiago by combining smart card
mobility data with measured surface concentrations from the monitoring network of Santiago and simulated
concentrations by the CHIMERE model. The method was applied between July 20th and 24th of 2015 to 105,588
users corresponding to 12% of the frequent users of the public transport system and approximately 2% of the
total population of Santiago. During those five days, estimated exposure based on measured concentrations
varied between 44 and 75 μg/m3 while exposure based on simulated concentrations varied between 45 and
89 μg/m3. Furthermore, including socioeconomic conditions suggests an inverse relationship between exposure
and income when measured concentrations are used, i.e. the lower the income the higher the exposure, whereas
no such relationship is observed when using simulated concentrations. Although only exposure to PM2.5 was
considered in this study, the method can also be applied to estimate exposure to other urban pollutant such as
ozone.

1. Introduction

Air quality (AQ) levels are a societal concern in Santiago, Chile.
During winter periods, particulate matter (PM) concentrations, more
specifically fine PM (PM2.5), exceed daily average thresholds set by
Chilean environmental regulation potentially causing harm to human
health and impacting the ecosystem (World Health Organization and
UNAIDS, 2006). PM causes damage to the respiratory and cardiovas-
cular system, leading to a higher number of hospital consultations, less
productivity and premature death (Kim et al., 2015).

The health impact of air pollutants in general, and PM in particular,
depends on the exposure to a given pollutant. The personal exposure
can be defined as the real exposure as it is experienced by individuals
(Dons et al., 2011) and is usually calculated as the average of the

concentration at the different places (micro-environments) visited by an
individual weighted by the time spent at each place. Therefore, esti-
mating the exposure of an individual requires knowledge of the pollu-
tant concentrations along his/her trajectory and the time spent during
the corresponding activity. An accurate exposure estimate takes into
account indoor and outdoor air pollution. However, exposure and/or
health impact has been estimated using solely outdoor concentrations
(e.g. Anenberg et al., 2012).

Concentration of air pollutants can be measured through portable
instruments (e.g. Etyemezian et al., 2005; Deville Cavellin et al., 2015)
or stationary air quality monitoring stations (e.g. Escudero et al., 2007;
Azmi et al., 2010; Mavroidis and Ilia, 2012). In addition, it can also be
estimated through chemical transport models (e.g. Draxler and Hess,
1998; Brasseur et al., 1998; Byun and Schere, 2006; Menut et al., 2013),
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which provide information about spatial distribution and composition
of PM.

Location of the population and activity patterns may be estimated
from sources providing geographic position as a function of time.
Previous studies have analyzed this with surveys where participants
declare where and when they are doing an activity during a specific day
(e.g. Leech et al., 1996; Klepeis et al., 2001; Muñoz et al., 2016; Olguín
et al., 2009). Other studies have considered mobile phone data (e.g.
Phithakkitnukoon et al., 2010; Alexander et al., 2015), smart card data
used in public transport systems (e.g. Devillaine et al., 2012; Ma et al.,
2013) and social media data (e.g. Hasan et al., 2013) where a device
sends a GPS pulse at regular time intervals.

Various methods have been proposed to estimate human exposure
in different environments. Most studies have estimated the exposure to
air pollutants using portable instruments during commuting (e.g. Rivas
et al., 2017; Salvatierra, 2016; Suárez et al., 2014; Cortese and
Spengler, 1976; Violante et al., 2006; Karanasiou et al., 2014). Previous
studies have also proposed analyzing exposure by combining mobility
patterns estimated with mobile phone data with pollution monitoring
from stationary sites (e.g. Liu et al., 2013a,b; Nyhan et al., 2016) and air
quality models (e.g. Dewulf et al., 2016; Yu et al., 2018).

In this paper, we present a method to estimate population exposure
to PM2.5 using public transport data from frequent users to obtain po-
pulation mobility and air pollutant data from a chemical transport
model and observations from stationary monitoring stations. To the
best of our knowledge, passive public transport data has not been used
for this purpose. Due to the lack indoor concentration measurements,
outdoor concentration will be used in this study to estimate exposure.
Out of the 18 million total daily trips made in Santiago, 57% are in
motorized modes and 51% are in public transport (Muñoz et al., 2016).

2. Data description and methodology

In the following, we present a brief description of Santiago, Chile
(Section 2.1), the selected period of analysis with deteriorated air
quality levels of PM2.5 (Section 2.2), the databases used in this study
(Section 2.3) as well as the methodology applied to estimate exposure
(Section 2.4).

2.1. The case of Santiago, Chile

Santiago (33.5°S, 70.5°W, 600m.a.s.l.) is the capital and largest city
of Chile encompassing nearly 35% of the country's population with a
total of 7.1 million inhabitants (INE, 2017). Nearly 2 million of these
are students (MINEDUC, 2018) and 3.4 million people are economically
active (INE, 2018). The topography surrounding Santiago basin in-
cludes the Chacabuco mountain range to the north, the central Chilean
Andes (average height of 4500m.a.s.l.) to the east, the Angostura de
Paine to the south and a coastal range (average height of 1500m.a.s.l.)
to the west.

In winter, thermal inversion together with Santiago's complex to-
pography results in poor ventilation and limited vertical mixing (Muñoz
Magnino and Alcafuz, 2012) preventing the dispersion of pollutants and
accumulating PM10 and PM2.5 (Villalobos et al., 2013). This represents
a serious air pollution problem and according to the Air Pollution
section of the World Bank Development Index report (World Bank,
2010), Santiago's mean annual PM concentrations appear to be one of
the highest in South America.

Santiago's total area of 641 km2 is divided in 34 municipalities and
has 11 air quality monitoring stations distributed in different munici-
palities (Fig. 1). There are notable differences between the munici-
palities, especially in terms of income, car ownership, household
characteristics and mobility patterns (Amaya et al., 2018). In particular,
Santiago's Eastern zone, comprised of Providencia, Ñuñoa, Vitacura, Las
Condes, La Reina and Lo Barnechea, clusters households with the
highest income.

2.2. Study period

The period considered in this study corresponds to the winter week
from Monday July 20th to Friday, July 24th, 2015.

During this time, the Ministry of the Environment (MMA, from
Spanish Ministerio del Medio Ambiente) forecasted two alert episodes
(21st and 23rd of July) and two pre-emergency episodes (22nd and
24th of July) according to the national threshold limits (Table 1). Alert
episodes entail restrictions that include, among others, suspension of
sport activities in schools, prohibition of agricultural burning and re-
sidential wood combustion and implementation of license plate re-
strictions. More restrictive measures are progressively enforced from
pre-emergency to emergency based on deteriorated air quality.

During the week of interest, typical synoptic conditions responsible
for bad air quality in Santiago were observed on July 20th, 24th and
25th and are associated with the leading edges of coastal lows with
downslope flow along the Maipo, bringing down the temperature in-
version and reducing the growth of the surface mixed layer (Rutllant
and Garreaud, 1995, 2004). Conditions on the 20th correspond to the
onset of a period of days with bad air quality. Synoptic configurations
on the 24th and 25th are responsible for the pre-emergency observed on
the latter (Mazzeo et al., 2018).

The maximum observed daily average concentration of PM2.5 by the
air quality monitoring network was measured at Cerro Navia (110 μg/
m3 on July 21st) and Pudahuel (105 μg/m3 on July 23rd) which are
located in the north-western zone of the city (Fig. 2). The least affected
municipality reported is in the eastern zone in Las Condes (19 μg/m3 on
July 24th). In addition, stations of Cerro Navia and Pudahuel presented
daily average PM2.5 concentrations corresponding to alert episodes on
the 22nd to 24th of July and one pre-emergency episode on the 21st of
July.

2.3. Database description

2.3.1. Monitoring station data
Surface concentrations of several air pollutants in Santiago are

measured by an air-monitoring network (http://sinca.mma.gob.cl)
controlled by the MMA. The network is composed of eleven stations
distributed in different zones of the city (Fig. 1). Out of the eleven
monitoring stations, four have monitored PM2.5 since January 1st, 2000
(La Florida, Las Condes, Pudahuel, Parque O'Higgins) and the rest since
May 2008. These stations are located in an urban area and at each
station PM2.5 is measured using a beta attenuation monitor (Met One
BAM-1020) (Liu et al., 2013a,b; SINCA, 2010).

Each station provides hourly concentrations of sulfur dioxide (SO2),
nitrogen oxides (NO and NO2), carbon monoxide (CO), ozone (O3) and
particulate matter PM10 and PM2.5. This network also provides tem-
perature, relative humidity, wind direction and wind speed. We note
that neither these meteorological parameters nor air pollutants other
than PM2.5 are used in the present study.

2.3.2. Modeling system
The modeling system used in this study is composed of the me-

teorological model WRF version 3.7.1 (Skamarock et al., 2008) and the
chemical transport model CHIMERE version 2014b (Menut et al.,
2013). This modeling system has been extensively validated against
measurements in central Chile and is successful in reproducing the main
features of the dispersion of PM2.5 in Santiago for two winter weeks in
2015 (15th to 28th July) with deteriorated AQ (Mazzeo et al., 2018).
The same model configuration adopted by Mazzeo et al. (2018) is used
in this study to simulate the dispersion of air pollutants for the period
between the 20th and 24th of July. The spatial resolution of the si-
mulated concentrations is 2× 2 km and the model time step is 5min. In
this study hourly outputs are used.

B. Trewhela, et al. Atmospheric Environment 215 (2019) 116878

2

http://sinca.mma.gob.cl


2.3.3. Mobility
Santiago has a multimodal integrated public transport system,

known as “Transantiago”, including bus and metro since 2007. The
system has over 6500 buses all equipped with GPS devices operating in
800 bus lines on a network with over 11,000 stops. Each public
transport bus is equipped with a GPS sending pulses every 30 s with the
position and time, this estimates the time the bus is at a public transport
network bus stop. The data generated by GPS and smart cards while
commuting has been used to study the user mobility pattern in the

public transport system (Munizaga and Palma, 2012; Devillaine et al.,
2012; Amaya et al., 2018). In addition, the integrated Metro network
has 6 lines and 118 stations and it is currently expanding with one more
line (Gschwender et al., 2016).

The fare collection system is based on a smart card named “bip!”. It
is the only payment method accounting for the 4.5 million total daily
trips in the public transport system. It is required to be validated at the
boarding of the bus and metro, thus in a two stage trip the user needs to
validate twice. However, it is not required to be validated at the
alighting stops.

To estimate exposure, both the boarding and alighting stops of a trip
are required. The alighting stop for each trip is estimated combining
information from the first validation (from the first trip after alighting)
and the line of the given trip (Munizaga and Palma, 2012). Once the
alighting stop is identified, the arrival time at the destination, as well as
the stops the user passed while travelling, are determined from the stop
sequence of the last line used and the bus GPS. The time interval be-
tween the moment the user reaches his/her destination and the next
validation in the public transport system gives an approximation of the
time spent on a given activity. In this study, we assume that each ac-
tivity is executed in the vicinity of the alighting bus stop until the user
travels again.

Fig. 1. Santiago's average household income per municipality from higher (red) to lower (blue) income [USD/month −2015]. Location of the eleven monitoring
stations are also illustrated (pink dots): Cerrillos (a), Cerro Navia (b), El Bosque (c), Independencia (d), La Florida (e), Las Condes (f), Pudahuel (g), Puente Alto (h),
Quilicura (i), Parque O'Higgins (j) and Talagante (k). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)

Table 1
PM2.5 concentration levels set by the MMA in Chile.
Episodes are declared when a monitoring station with
population representativeness measures these average
concentrations for 24 h.

Level PM2.5 [μg/m3]

Good <50
Regular 50–79
Alert 80–109
Pre-emergency 110–169
Emergency >170
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Raw smart card data gathered during the days of interest contains
around 22 million trips and 2 million different smartcards. In this study,
we focus only on frequent transport users, defined as those that use the
public transport system five days within a week (45% of the total smart
cards used in a week), which reduces the database to around 900,000
cards. Of these users, the alighting stops, activities and residence could
be estimated for 105,588 frequent transport users (1,7% of the popu-
lation in Santiago and 12% of the frequent transport users during this
week) with a total of 1.3 million trips in a week (5,7% of the total trips).
These 105,588 constitute the sample used in this study. Out of this
sample, 47% travelled twice per day in the public transport system
during the week analyzed, of which 52% conducted single trip stages
while 48% conducted two trip stages (with one transfer). The sample
considers both regular (82%) and student (18%) smart cards with
homes mainly located in Santiago municipality (12.6%), Maipú (9%),
La Florida (8.3%), Puente Alto (7.7%), Estación Central (6.2%), Lo
Prado (5.5%), Las Condes (5.4%), Providencia (4.9%), Pudahuel (4.1%)
and Ñuñoa (3.8%).

Activities considered are travel, home, work, school/university
(hereafter study) and other. The latter usually related with leisure.
Travel is the moment when the user has made a validation in the public
transport system until he reaches his destination. The methodology to
determine if the user is at home, work, studying or other is based on the
smart card type and the duration between validations (Devillaine et al.,
2012). Home-based activities are detected if the trip is the last one of
the day and the next morning validation is at a close distance from the
last alighting stop. Work activities are identified if the card type is adult
and the interval between validations is longer than 2 h. Study activities
involve validations with a student card and duration longer than 5 h
and other activities are assumed when the interval time is between
1min and 2 h.

The user's residence is estimated by observing the spatial distribu-
tion of the first morning validation of the day between 4:00 a.m. and
noon. If the bus stops where the first validations are made are within
walking distance for at least 3 days, then the user's residence is assigned
to the location of these bus stops (Amaya et al., 2018).

Home activities are highly densified in the western (28%) and
south-eastern (22%) zones (Fig. 3). Workplaces are mostly located at
the center and east, specifically in Santiago (32%), Providencia (22.8%)
and Las Condes (12.8%) municipalities. Study places are concentrated
near subway lines and located mostly in Santiago (34.5%), Providencia

(24.3%) and Las Condes (9.6%).
Time attribution to each activity indicates that students spend 1.5 h

more at home on average than the economically active population
(hereafter workers) (14 vs. 12.5 h). Work activities are on average 10 h
long and study 9 h long. Users residing in central municipalities
(Providencia, Santiago, Lo Prado, Ñuñoa, Estación Central and Las
Condes) spend on average 36–48min in transportation, while residents
from peripheral municipalities (San Bernardo, Quilicura, La Pintana,
Cerro Navia, El Bosque, Lo Espejo, Maipú and Cerrillos) spend around
84–102min travelling (not shown).

As an example, the data from a typical working day (July 20th), is
used to examine the distribution of the five activity types defined above
throughout the day. As expected, we observe that home based activities
are mainly performed during night time hours contrary to work related
activities which start at 9:00 a.m. and finish around 7:00 p.m. (Fig. 4).
Study activities are concentrated between 10:00 a.m. and 5:00 p.m.
Also, morning and evening travel peaks can be observed at 8:00 a.m.
and at 7:00 p.m. when most users travel from home to work in the
morning and return in the afternoon, respectively. Time assigned to
each activity generally remains unchanged throughout the examined
period (see Figure A1 in the appendix).

2.4. Exposure estimation

The exposure during each activity is calculated as the product of the
concentration at the nearest bus stop where the activity is conducted
and its duration. The concentration at work (or study) and at home is
that of the destination bus stop of the corresponding trip whereas
during travel it is that of each stop the bus passes by. The duration of
activities other than travel (i.e. work, study, home and others) is as-
sumed as the time spent at the alighting stop until the user takes a new
trip. Exposure time during travel is assumed as the time between the
involved bus stops.

A representation of the methodology to estimate exposure for a
given user i while travelling is illustrated in Fig. 5. The user starts a trip
at the boarding bus stop S1. After boarding the bus, the user travels and
passes by the bus stop S2. User's destination is located at S3 where the
purpose of the trip is performed. The duration of this trip (D) is from the
boarding time at bus stop S1 to the alighting time at the bus stop S3. The
duration of the activity conducted at S3 corresponds to the time from
arrival at S3 to the time the user starts a new trip.

Fig. 2. Hourly PM2.5 concentrations from the 20th to 24th of July 2015 at each station of Santiago's air quality monitoring network.
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The exposure to PM2.5 is estimated using two different datasets;
measurements from the monitoring stations (MS) and simulated con-
centrations from a chemical transport model (CHIMERE). This is done

to analyze impact on the exposure estimate from a larger information
grouping with the model and compare it to observations from a limited
number of stations. The impact of the model bias with respect to ob-
servations in estimated exposure is examined in section 5.

The concentration at each bus stop is taken either from the nearest
monitoring station (Fig. 5a) or the nearest model grid-point (Fig. 5b).
The analysis is also extended by calculating the exposure using syn-
thetic observations at each monitoring station. These correspond to the
simulated concentration from the closest model grid-point to the
monitoring station (Fig. 5c).

In this study, exposure is estimated using outdoor concentrations
since information on indoor air pollution is not available and the esti-
mation is based on the concentration at each bus stop and therefore no
specific information exists on the actual place the activity is conducted.
In addition, exposure during subway travel was not computed since air
pollution information in the underground subway network is not
available. Nevertheless, exposure for subway users was calculated
during activities (home, work, study and other) using exposure at the
alighting station of the metro trip estimated with the methodology
proposed by Munizaga and Palma (2012).

3. Results

Average daily exposure (across all users) based on measured con-
centrations (MS) ranged between 44 and 75 [μg/m3] whereas exposure
estimated with simulated concentrations (CHIMERE) varied between

Fig. 3. Heat maps representing the distribution of activities at home at 4:00 a.m. (blue), work at 2:00 p.m. (red) and study at 2:00 p.m. (brown). Darker colors reflect
higher density of users. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Time assigned to activities home (blue), work (red), travel (green),
study (yellow) and other (purple) during a typical working day. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 5. Illustration of methodology estimating PM2.5 concentration at each bus stop for a user (i) travelling from bus stop S1 to bus stop S3 to perform an activity at
this bus stop. Trajectory is represented with a solid black line while blue squares correspond to monitoring stations, green dots to CHIMRE concentrations at model
grid-points and blue square filled with a green dot to CHIMERE concentration at the nearest monitoring station. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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45 and 89 [μg/m3] (Table 2). The difference in average daily exposure
between both estimates is larger on more polluted days. For an analysis
on the model performance to reproduce the observations we refer to
Mazzeo et al. (2018). In that study, the authors examine the model
performance to simulate PM2.5 and NOx and explore the impact of
mitigation measures based on the reduction of residential and transport
emissions to improve air quality for the period considered in the present
study. The study shows that reducing transport emissions is more ef-
fective in reducing the number of episodes than decreasing residential
combustion due to the spatial distribution of the emission sources.

The average daily exposure is now examined based on the thresh-
olds of pollution levels established by the Chilean AQ legislation
(Table 1). According to exposure estimates based on MS observations,
the population considered in this study was only exposed to Pre-
emergency pollution levels (between 110 and 169 [μg/m3] on a 24-hr
average) on July 21st (2% of the users) whereas based on CHIMERE
outputs the population was exposed to this pollution level on the 23rd
and 24th of July (5% and 1%, respectively) (Table 3). In addition, the
percentage of users exposed to Alert levels (daily average concentration
between 80 and 109 [μg/m3]) never exceeded 31% based on MS ob-
servations, while the exposure calculated with CHIMERE reached up to
73% of the users on July 23rd. However, while the percentage of users
exposed to Alert concentration levels is larger on the 21st and 22nd for
MS estimates, the 23rd and 24th estimates based on CHIMERE data
suggest a larger number of users exposed to this level of pollution. Both
exposure estimates agree that over 80% of the population was exposed
to concentrations lower than 50 [μg/m3] on July 20th, the less polluted
day of the week.

For the analysis of hourly exposure, focus will be on the ranges with
the largest concentration levels, i.e. between 110 and 169 [ug/m3] and
above 170 [ug/m3]. These two levels have the largest health impact as
well as a larger number of activity restrictions (Mazzeo et al., 2018).
According to the exposure estimated with MS data, exposure to con-
centrations above 170 [ug/m3] occurred only on the night of the 21st
and 24th while according to CHIMERE data this occurred in the

morning of the 24th and midnight of the 25th (Fig. 6). Furthermore, on
the 21st and 22nd a larger percentage of the population was exposed to
concentrations between 110 and 169 [ug/m3] according to MS data,
whereas on the 23rd and 24th more users were exposed to this level of
pollution based on CHIMERE data.

Approximately 91% of the estimated average daily exposure was
associated with work and home-based activities for both data sets
(Fig. 7). Similar results are seen for students in both datasets (see figure
A2 in appendix). Due to similar exposure between workers and stu-
dents, we will focus the remainder of the paper on work related activity.
Equivalent figures of student exposure compared to the ones presented
hereafter are provided in the appendix.

Although both methods estimate 91% combined exposure at work
and home activities, the method using MS data estimates 38% and 53%
exposure associated to work and home activities, respectively, whereas
the one using simulated data estimates 48% and 43% exposure at work
and home, respectively. The difference between both estimates reflects
the different concentrations assigned by each method to the bus stop
where the activity is conducted. The remaining 9% of the total exposure
is associated to travel and other activities.

Average daily exposure estimated with MS data (Fig. 8 A) showed
that people with the highest daily exposure were residents from Cerro
Navia (92 [μg/m3]), Pudahuel (90 [μg/m3]) and Quinta Normal (87
[μg/m3]) while residents with the lowest exposure were from Lo Bar-
nechea (27 [μg/m3]), Vitacura (40 [μg/m3]) and Las Condes (41 [μg/
m3]). However, estimated exposure with CHIMERE data (Fig. 8 B)
showed that residents with the highest exposure were from Cerro Navia
(92 [μg/m3]), Pudahuel (92 [μg/m3]) and Conchalí (89 [μg/m3]) and
those with the lowest exposure were from Lo Barnechea (42 [μg/m3]),
Puente Alto (70 [μg/m3]) and San Bernardo (68 [μg/m3]).

The exposure variability with MS data was between 4.6 and 15.9
[μg/m3] with an average standard deviation of 8.7 [μg/m3].
Specifically, users from Providencia, Ñuñoa, Macul, Maipú,
Independencia, La Florida, Quilicura, Puente Alto, San Joaquín,
Conchalí, Recoleta and Cerrillos presented the lowest standard devia-
tions (4.6–6.6 [μg/m3]), while residents from La Pintana, Renca, P. A.
Cerda, Lo Prado, Quinta Normal, La Granja, San Miguel, La Reina, Las
Condes, Lo Barnechea and Vitacura presented the largest (9.4–15.9
[μg/m3]).

CHIMERE results showed a smaller range of exposure standard
variations than MS results (9.4–18 [μg/m3]) with an average standard
deviation of 12.1 [μg/m3]. Users from Lo Barnechea, La Reina,
Peñalolén, Vitacura and Las Condes showed the largest variations
(ranges between 14.8 and 18 [μg/m3]) while the rest of the munici-
palities showed exposure variations from 9.4 to 13.3 [μg/m3].

The analysis of exposure and the average income in each one of the
municipalities of residence suggests a correlation between these para-
meters for estimates using both datasets; MS and CHIMERE (Fig. 9).
While exposure calculated with MS data showed an inverse relationship
between these variables, i.e. poorer municipalities are exposed to larger
PM2.5 concentrations, the calculated exposure with CHIMERE data
showed no such relation.

4. Discussion

The presented research is an exploratory study to estimate exposure
to PM2,5 of frequent public transport users with two different pollution
datasets from Santiago; measured concentrations from monitoring sta-
tions of the air quality network of Santiago and simulated concentra-
tions from a chemical transport model (CHIMERE). The method is ap-
plied to selected public transport users during a week with deteriorated
air quality from July 20th to July 24th, 2015.

In this study, outdoor concentrations are used to estimate exposure
during bus trips. No measurements of PM2.5 concentrations were made
inside buses during the analyzed period that would allow estimating the
bias of this assumption. However, Suárez et al. (2014) measured

Table 2
Average daily exposure to PM2,5 using both air pollutant data sources.

Day Average exposure (MS) [μg/m3] Average exposure (CHIMERE) [μg/m3]

20 44 45
21 75 72
22 73 69
23 73 89
24 67 82

Table 3
Percentage of users exposed to the established AQ norms for PM2,5 using MS
observations (A) and CHIMERE outputs (B).

A

Day Good Regular Alert Pre-emergency Emergency

20 89% 10% 0% 0% 0%
21 3% 65% 30% 2% 0%
22 2% 67% 31% 0% 0%
23 5% 82% 13% 0% 0%
24 7% 73% 19% 0% 0%

B

Day Good Regular Alert Pre-emergency Emergency

20 82% 18% 0% 0% 0%
21 2% 75% 24% 0% 0%
22 4% 80% 16% 0% 0%
23 1% 22% 73% 5% 0%
24 1% 39% 58% 1% 0%
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exposure for different transport modes (bicycle, bus, car and subway)
from June 13th to October 13th, 2011 and from March 6th to May 15th,
2012. Their results show that the average exposure inside buses was
60.4 [ug/m3] while on bicycles it was 50.9 [ug/m3]. As both trips were
made on the same route, the difference in exposure between both
transport modes suggests that using outside concentrations to estimate
exposure could represent an underestimation of the real exposure inside
buses.

In order to disentangle the differences in exposure between the two
datasets (MS and CHIMERE), the analysis was extended by calculating
the exposure using CHIMERE simulated concentrations at each one of
the eleven monitoring stations (CHIMERE-MS henceforth).

The differences between the exposures calculated using MS and
CHIMERE-MS (Table 4, second and forth column, respectively) reveals
the model bias. The model underestimates the exposure during the first
three days while overestimating it during the last two days. Further-
more, smaller differences between the two estimates are seen during
these first three days (ranging from 1 to 4 [μg/m3]) and larger differ-
ences occur during the last two days (16 and 14 [μg/m3]).

The difference between CHIMERE and CHIMERE-MS (Table 4, third
and fourth column, respectively) reveal the impact of the density of the
monitoring network on the exposure calculation. As both exposures are
calculated using model data, the differences lie only in the concentra-
tion assigned to each bus stop. We recall that the exposures estimated
from concentrations of the monitoring stations (i.e. CHIMERE-MS) are
based on the 11 stations spread around the city. Each user is assigned a
concentration value from the nearest station at all times, the distance
from which may vary throughout the day. Users residing in munici-
palities near a monitoring station (El Bosque, Independencia, Cerro
Navia, Cerrillos, Pudahuel, La Florida, Puente Alto) usually perform
daily activities less than 3 [km] away on average (not shown). How-
ever, the average distance between users and the closest monitoring
station is shown to be over 3 [km] in 20 out of 34 municipalities. On the
contrary, exposure estimated based on the simulated concentration
fields from CHIMERE are based on a regular mesh with resolution of
2×2 km, thus the maximum distance of a user to the closest grid is
1.4 km. Therefore, the present analysis is equivalent to comparing the
exposure estimate based on a network of 11 stations with the estimate

Fig. 6. Percentage of public transport users exposed to different levels of PM2.5 from the 20th to 24th of July 2015 based on (A) the monitoring stations and (B) the
modeling system.

Fig. 7. Activity percentage contribution in daily average exposure to PM2.5 grouped by worker's municipality of residence calculated with MS data (A) and CHIMERE
data (B).
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Fig. 8. Average weekly exposure to PM2.5 distribution (20th to 24th of July 2015) using AQ monitoring station data (a) and CHIMERE data (b). Results are grouped
by user's municipality of residence and sorted from lower (left) to higher (right) income.
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based on a network of multiple stations distributed on a regular grid of
2× 2 km. In Santiago with an area equivalent to 25×25 km this
would correspond to a network of 144 stations.

Exposure estimated with the synthetic observations (CHIMERE-MS)
is lower than exposure based on data from the “larger network”
(CHIMERE) throughout the five days with differences ranging between
1 and 3 [μg/m3]. This range is comparable to the underestimation
observed during the first three days in the case where exposure esti-
mated from observations is compared to estimates based on synthetic
observations (MS vs CHIMERE-MS). Although small, this difference
suggests an impact on the estimate of the information density or size of
the network. This impact is larger, however, when examining the ex-
posure at the municipality level (Fig. 10 vs Fig. 8a and b). In general, a
larger variability of exposure for residents of the different munici-
palities in Santiago is observed when estimating the exposure with a
“larger network”, in particular for the residents from municipalities
with no measuring station. Spatial heterogeneity in exposure is strongly
and artificially reduced when estimating exposure with CHIMERE-MS;
degrading the model resolution by bringing it to the selected points of
the network has the effect of narrowing the intra-communal exposure
range to levels comparable to the ones in Fig. 8a. This shows that the
narrowness in Fig. 8A is in (good) part the effect of insufficient spatial
density of the measurement network, and is not real. Similarly, the
(negative) correlation between income and exposure shown in Fig. 9a is
also due to the lack of spatial representation of the monitoring stations.
Given the spatial correlation of income observed in Fig. 1, highest in-
come municipalities are associated to only one monitoring station with
the lowest concentrations throughout most of the week (Fig. 2, Las
Condes station). This effect becomes apparent in Fig. 10, where the
exposure is estimated with CHIMERE-MS and the decrease in exposure
for higher income municipalities can also be observed.

Besides the sources of uncertainty in the estimates discussed above
(model bias and network density), there are some additional ones to
consider. The time-activity estimation made from travel cards is subject
to errors and uncertainty. The different stages of the travel estimation
process were validated with exogenous data from surveys and a group
of volunteers, revealing that the trip destination was correctly identi-
fied in 84% and the purpose of the trip in 79% of the cases (Munizaga
et al., 2014). Furthermore, indoor exposure was estimated based on
outdoor concentrations, although differences between these two can be
significant; indoor/outdoor ratios (I/O ratio) for PM2.5 for different
cities in the world range between 0.12 and 3.36 (Chen and Zhao, 2011).
Studies conducted in Santiago have estimated the I/O ratios to be 0.95
for high-income households (Rojas-Bracho et al., 2002), 1.08 for public
housing and 1.18 for houses in slums (Burgos et al., 2013).

In order to estimate the impact of these I/O ratios on the estimated
exposure, these were recalculated at residence and during travel. For
home activity an I/O ratio of 0.95 was used for households in high-
income municipalities and 1.18 for households in those remaining. The
I/O ratio during travel (1.19) was estimated based on the average ex-
posure inside buses (60.4 [ug/m3]) and on bicycles (50.9 [ug/m3])
(Suarez et al., 2014), the latter was used as proxy for outdoor con-
centration. No equivalent I/O ratio could be found for Santiago in the
literature for work, study and other activities. Consistent with the above
and regardless of the dataset used, the impact of including the I/O ra-
tios increases the average exposure for low-income municipalities by
approximately 6 μg/m3 and decreases it for high-income ones up to
0.6 μg/m3 (Fig. 9). We note that when applying the I/O ratios to the
exposure computed based on CHIMERE data, a dependency of exposure
to household income appears which was not apparent in the ratios
without I/O. Similar results were found when applying the same I/O
ratios as used for residence (not shown) to work and study.

5. Conclusions

In this study we estimate the PM2,5 exposure of 105,588 frequent
public transport users in Santiago by combining smart card mobility
data with surface concentration data from 11 monitoring stations and
simulated concentrations from the CHIMERE model. This method was
applied five working days from July 20th until the 24th, 2015, and the
activities identified were home, work, study, travel and other.

For the five days, the average exposure estimated with observations
ranged between 44 and 75 [μg/m3] while exposure based on simulated

Fig. 9. Linear regression between average household income per municipality and average weekly exposure (green) with MS data (R2=0.51; β=−8.642×10−6;
ε=+-1.485 × 10−6; t=−5.82) (A) and CHIMERE data (R2= 0.04; β=−1.440× 10−6; ε=+-1.212 × 10−6; t=−1.188.) (B). Statistics of each regression are
included where R2 is the correlation coefficient, β is the slope, ε is the error term and t is the significance test. Equivalent linear regression is included (red) when
exposure is estimated considering I/O ratios for home and travel activities. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Table 4
Average daily exposure to PM2,5 using both air pollutant data sources.

Day Average exposure
(MS) [μg/m3]

Average exposure
(CHIMERE) [μg/m3]

Average exposure
(CHIMERE MS) [μg/m3]

20 44 45 43
21 75 72 69
22 73 69 66
23 73 89 86
24 67 82 81
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concentrations varied between 45 and 89 [μg/m3]. Furthermore, the
highest average daily exposure estimated with measured concentration
was reported on the 21st of July with 2% of the users exposed to
concentrations between 110 and 179 [μg/m3]. In the case of modeled
data, highest average daily exposure to PM2,5 occurred on the 23rd and
24th of July with, respectively 5% and 1% of the users exposed to the
same concentration levels.

Nearly 70% of the total workplaces are in Santiago, Providencia and
Las Condes municipalities, thus the larger exposure estimated with
CHIMERE at work is mostly due to higher modeled concentrations in
these locations. Households, on the contrary, are distributed more
evenly than workplaces and are mostly on the periphery. The larger
calculated exposure with MS data suggests that the simulated con-
centrations underestimate the concentrations on the periphery during
night hours.

The relationship between user's socioeconomic background and
exposure to PM2,5 varied depending on the dataset used. An inverse
relationship between exposure and income is observed for concentra-
tions of the AQ network: i.e. the lower the income the higher the ex-
posure. In this case, residents from high-income municipalities
(Vitacura, Lo Barnechea, Las Condes) reported lower exposures than
residents from low-income municipalities (Lo Espejo, Cerro Navia, La
Pintana). Exposure calculated using simulated data showed no re-
lationship, suggesting that the exposure to PM2.5 is not related to in-
come. Exposure estimations with CHIMERE data showed that the
highest exposure affected residents from Las Condes, Pudahuel, Ñuñoa
and Cerro Navia and the minimum exposure was estimated in Lo
Barnechea, Puente Alto and San Bernardo.

The density of the AQ monitoring network of Santiago has limited
impact on the estimated average exposure at the city scale, however it
has a strong impact at the communal level. Comparison of the average
exposure at communal level between estimates based on observations,
model output and synthetic observations revealed that spatial

heterogeneity of the exposure estimated with observations is strongly
influenced by the density of the measuring network. The consequence
being that the health impact in certain communities can be largely
underestimated.

Urban features such as street width, building heights, traffic emis-
sions, etc. are responsible for spatial variation of pollutants at scales
smaller than the model resolution and are therefore not captured by the
model. Yet there are methods that include sub-grid variability and
therefore estimate concentrations within the grid cells (Valari and
Menut, 2010). These methods were not considered in this exploratory
research and could be implemented in the future. Furthermore, no in-
door concentrations, neither at home/work nor in public buses were
taken during the week considered in this study and therefore, as a first
order approximation, outside concentrations were considered to be
representative of inside concentrations at home/work as well as during
transport. A previous exposure study conducted on different transport
modes provides information on the bias introduced by using outdoor
concentrations and also suggests that, during commuting, using outdoor
concentrations could underestimate the exposure. Furthermore, ex-
posure was recalculated considering I/O ratios from Santiago for home
and travel activities increasing exposure in households of low-income
municipalities and decreasing it in high-income municipalities.

The methodology presented has the advantage that it allows esti-
mating exposure for a larger sample and on a more regular basis than
methods requiring portable instruments to assess population activity
pattern and/or measure exposure directly. Even though the exposure is
calculated using public transport data, the results can be extended to a
larger sample as most of the people that use other transport modes
perform them in a similar activity pattern. Although we focus in this
work on PM2.5, the exposure can also be estimated for other pollutants
such as NOx, SO2, CO, O3, PM10.

Policies that impact emissions affect the atmospheric concentrations
of urban pollutants and thus the exposure to these pollutants. The use of

Fig. 10. Average weekly exposure to PM2.5 distribution (20th to 24th of July 2015) using CHIMERE data at the monitoring station network location (CHIMERE-MS).
Results are grouped by user's municipality of residence and sorted from lower (left) to higher (right) income.
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this method for the management of AQ episodes could provide popu-
lation exposure information and evaluate the impact of different miti-
gation measures. It would also enable conducting a more realistic as-
sessment of the exposure since the daily activity patterns of the
population would be considered instead of the static approach tradi-
tionally applied.
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