

1

D4.5 P2P level security and M-Sec blockchains

December 2019

2

Grant Agreement No. 814917

Multi-layered Security technologies to ensure hyper-connected

smart cities with Blockchain, BigData, Cloud and IoT

Project acronym M-Sec

Deliverable D4.5 P2P level security and M-Sec blockchains

Work Package WP4

Submission date December 2019

Deliverable lead Georgios Palaiokrassas (ICCS)

Authors Georgios Palaiokrassas (ICCS), Orfeas Voutyras (ICCS), Xavier Cases

Camats (WLI)

Internal reviewer Arturo Madela (TST), Aamir Bokhari (YNU)

Dissemination Level Public

Type of deliverable DEM

Version history - V01, 11/12/2019, Georgios Palaiokrassas, Content added

- V02, 18/12/2019, Orfeas Voutyras, Section 4 completed

- V03, 19/12/2019, Xavier Cases Camats, Contribution to Section 2.1

- V04, 19/12/2019, George Palaiokrassas, Ready for Internal Review

- V05 19/12/2019, Aamir Bokhari, 1st Internal Review

- V06 19/12/2019, Arturo Madela, 2nd Internal Review

- V07 20/12/2019, Georgios Palaiokrassas, answers to comments

- V1.0 20/12/2019, Georgios Palaiokrassas, ready for submission

The M-Sec project is jointly funded by the European Union’s Horizon 2020 research and innovation

programme (contract No 814917) and by the Commissioned Research of National Institute of Information and

Communications Technology (NICT), JAPAN (contract No. 19501).

3

Table of Contents

Table of Contents .. 3

List of Tables .. 5

List of Figures ... 5

1. Introduction .. 6

1.1 Relationship to other work packages and tasks .. 6

1.2 Methodology followed .. 7

2. Demonstration 1: Blockchain Framework and Middleware Services ... 8

2.1 General Description of the Prototype ... 8

Component Module 1: Hyperledger blockchain framework .. 9

Component Module 2: Ethereum & Quorum blockchain framework .. 10

Component Module 3: Middleware Services ... 21

2.2 Package Information & Installation Instructions ... 24

Required Tools and dependencies .. 24

Install Truffle Suite .. 24

Install Solidity .. 24

Install Quorum Blockchain Network ... 24

Licensing.. 24

3. Demonstration 2: IoT Marketplace ... 25

3.1 General Description of the Prototype ... 25

Components .. 27

Component Module 1: Node-Red Flows .. 27

Component Module 2: Blockchain Smart Contracts .. 27

Component Module 3: Web Application .. 28

3.2 Package Information & Installation Instructions ... 29

Required Tools and dependencies .. 29

Install NodeRed ... 30

Install Nodejs .. 30

Install MySQL .. 30

Install Front End .. 30

4

Install Java ... 31

Install Ethereum/Quorum Blockchain .. 31

Operating System ... 31

Okeanos .. 31

Licensing (if applicable) ... 31

Demonstration 3: Trust & Reputation Management .. 32

3.3 Introduction ... 32

The M-Sec T&R model (M-Sec T&RM) .. 33

Calculation of Trust & Reputation .. 35

3.4 Testing ... 36

TRMSim-WSN .. 36

4. Conclusion ... 39

5

List of Tables

Table 1: Overview of M-Sec Token's functions ... 16

Table 2: Detailed presentation of functions and events of M-Sec Token ... 16

Table 3: Sensors Smart Contract details .. 18

List of Figures

Figure 1. Overall M-Sec topology .. 7

Figure 2. Representation of the architecture of our prototype based on Hyperledger 9

Figure 3. Hyperledger Explorer giving details about the underlying permissioned blockchain 9

Figure 4. Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances 10

Figure 5. Details about blocks, transactions, addresses and smart contracts .. 12

Figure 6. The Trust Continuum .. 13

Figure 7. Alastria in the Trust Continuum ... 14

Figure 8. Item Manager Smart Contract .. 17

Figure 9. Sensors Smart Contract .. 18

Figure 10. Overview of the KYC process for the M-Sec Platform .. 21

Figure 11. Overview of the M-Sec IoT Marketplace and its components ... 25

Figure 12. Node-Red Flow for the simulation of IoT sensor data ... 27

Figure 13. Graphical User Interface enabling searching of sensors in the smart contracts running on

blockchain .. 28

Figure 14. Graphical User Interface of the returned results after the query to the smart contract................. 29

Figure 15. Graphical User Interface of the Explorer .. 29

Figure 16: General steps followed in T&R models. ... 33

Figure 17: Calculation of the Trust Index of an actor. ... 36

Figure 18: TRMSim-WSN. .. 37

Figure 19: Normal Network Comparison ... 37

6

1. Introduction

The current document, deliverable ‘D4.5 P2P level security and M-Sec blockchains’, provides the first version

of M-Sec developments related to blockchain technology and P2P level security. In detail, it presents three

different demonstrators as well as the corresponding services and gives installation details. It also provides

plans about future developments until the next iteration of this deliverable, namely D4.6 on M30. The main

focus of the presented demonstrators and tools is to implement the M-Sec blockchain framework to

facilitate the convergence of IoT security with blockchains in order to support an innovative smart city

platform.

1.1 Relationship to other work packages and tasks

Task T4.3 receives input from WP2 tasks in particular from Task2.1 – “Use cases description” (which identify

and describe use cases) and Task 2.2 “M-Sec Pilots: Definition, setup and citizens involvement”, since the

implementations support the Use Cases and Pilots. Additionally, there is a strong dependency with T2.3

“Overall Integration”.

At the same time, task T4.3 interacts with WP3 – “Requirements, architecture for hyper connected smart

cities”, in particular with Task3.1 – “System level and User level requirements” where M-Sec requirements

are defined and consolidated, and also, with Task3.2 – “M-Sec architecture”, where the M-Sec architecture is

defined.

Furthermore, T4.3 has dependencies with the rest of WP4 “Multi-layered Security technologies” Tasks and

more specifically with T4.1 for IoT security and related services based on blockchain technology, T4.2 “Cloud

and data level security”, T4.4 “Application level security” and T4.5 “Overall end-to-end security” focusing on

the integration with respective implementations for encrypted data storage.

7

Figure 1. Overall M-Sec topology

1.2 Methodology followed

In order to enable the M-Sec paradigm, we researched different technologies and approaches of blockchain

technology. We started the analysis with a detailed description of different blockchain frameworks, such as

Ethereum, Hyperledger and Quorum, and tools we experimented with. Then we present three different

demonstrators, which are the core of T4.3 and aim to support the different use cases and pilots.

8

2. Demonstration 1: Blockchain Framework

and Middleware Services

2.1 General Description of the Prototype

The main focus of this Prototype is to implement the M-Sec blockchain framework, and to facilitate the

convergence of IoT security with blockchains in order to support an innovative smart city platform. We used

Ethereum-based blockchains as the basic foundation of M-Sec blockchain as it enables not only the exchange

of value (M-Sec tokens) but also the enforcement of smart contracts, which provides an additional feature

for the implementation and validation of the selected M-Sec use cases.

A milestone for the course of blockchain technology was the development of Ethereum project1, offering

new solutions by enabling smart contracts’ implementation and execution. It is a suite of tools and protocols

for the creation and operation of Decentralized Applications (DApps), “applications that run exactly as

programmed without any possibility of downtime, censorship, fraud or third-party interference”.

It also supports a contract-oriented, high-level, Turing-complete programming language2, allowing anyone to

write smart contracts and create DApps. Smart contracts are mainly written in the programming language

Solidity3-4.

We have initially experimented with different Blockchain platforms, before concluding to Ethereum based

blockchains such as Quorum and examined both public (unpermissioned) and private (permissioned)

alternatives of the M-Sec blockchains. The most prominent among them was “Hyperledger”, which is

described in the next Section. Hyperledger implementation was considered as it can enable, through specific

channels, the implementation of flexible blockchains with different permissions and authorization schemes.

The peer group management service is also part of the work covered in this task, as research will be pursued

for defining how the blockchain networks are going to be self-organized and structured in the context of

service provisioning so that they can form and operate the multi-layered architectures.

1
 J. Ray, "Ethereum Introduction," 11 12 2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/Ethereum-

introduction
2
"White Paper," [Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

3
 Ethereum, "What is Ethereum?," [Online]. Available: http://www.ethdocs.org/en/latest/introduction/what-

isethereum.html.

4 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io

9

Component Module 1: Hyperledger blockchain framework

We used three different open source Hyperledger Platforms and an overview of the overall architecture is

presented in the diagram that follows (see Figure 2). The three projects are:

 Hyperledger Explorer: it provides details about the underlying blockchain such as the number of

blocks, the transactions, the peers etc.

 Hyperledger Composer: it facilitates the development of smart contracts (“chaincode”)

 Hyperledger Fabric: it provides the permissioned blockchain

Figure 2. Representation of the architecture of our prototype based on Hyperledger

Our implementation was based on a permissioned blockchain, but we should note that by granting open

access to all users, we would have a public-like blockchain.

Through Hyperledger Explorer (see Figure 3) we can inspect the Hyperledger Fabric Blockchain (Transactions,

Blocks and others.)

Figure 3. Hyperledger Explorer giving details about the underlying permissioned blockchain

10

Component Module 2: Ethereum & Quorum blockchain framework

In this Section we present the details regarding the blockchain platform, in which we develop the smart

contracts that support the different use cases. As mentioned before, the different smart contracts are

written in the programming language Solidity5 .

1. Private Ethereum Blockchain

During the development process we have used a local private blockchain named Ganache6, which

allowed us extensive testing of the developed smart contracts. It provides a personal Ethereum

blockchain which we can use to run tests, execute commands, and inspect the state while controlling

how the chain operates. It provides a built-in explorer as shown in the following Figure 4 and allows

us to quickly see the current status of all accounts, including their addresses, private keys,

transactions and balances.

Figure 4. Ganache Explorer allows us to examine all blocks, transactions, addresses and their balances

2. Public Ethereum Blockchain

Additionally, we deployed smart contracts on Public Ethereum Blockchain using browser IDE

“Remix”7. Remix is an open source tool that supports smart contracts development on the browser

and facilitates the deployment on local or public Ethereum-based blockchain platforms. We used

Ropsten public Ethereum blockchain8. It is important to extensively test the smart contracts before

we deploy them to the Quorum blockchain network (see next section), since the code can’t be

5 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io.

6
 https:// www.trufflesuite.com/ganache

7
 https://remix.ethereum.org/

8
 https://ropsten.etherscan.io/

11

changed after deployment. To this direction, extensive testing was carried out on blockchains, by

using these two testing solutions: Ganache Cli, as well as the Ropsten Test Net.

3. Quorum blockchain framework

Finally, the different smart contracts are written in the programming language Solidity9 and are

deployed on Quorum blockchain framework10. Quorum is a permissioned implementation of

Ethereum which allows certified members to build and run decentralized applications that run on

blockchain technology. It is open source platform and supports smart contract privacy. Both private

and public smart contracts are validated by every node within the blockchain network. Additionally,

Quorum provides privacy and transparency, both at transaction-level and network wide.

In each Quorum node consensus is achieved with the Raft or Istanbul BFT consensus algorithms

instead of using Proof-of-Work. The P2P layer has been modified to only allow connections to/from

permissioned nodes. In Ethereum the notion of Gas was introduced (the fee or pricing value

required to successfully conduct a transaction or execute a contract on Ethereum blockchain

platform), while in Quorum the pricing of Gas has been removed, although Gas itself remains.

One of the features of Quorum that are of great value for the component is the network and peer to

peer permission management. This feature enables only the validated and authorized users to have

access and be a part of the network. Also, Quorum provides enhanced transaction and smart

contract privacy features. Permission-based nature of Quorum enables the constitution of private

and public transaction getting the best of both worlds, open transactions are analogous to Ethereum

but when it comes to the private transaction then it is confidential, and the data is not exposed to

the public. Quorum adds privacy functions that allow for private transactions that are only visible to

the transacting parties, while the other parties in the network would only see a hash. Finally,

Quorum is considered to be very fast and being able to process even thousands of transactions per

second, due to its efficient consensus mechanism which belongs to the family of Byzantine Fault

Tolerance (BFT) mechanisms11.

In order to develop and deploy the smart contracts to Quorum blockchain, we have used Truffle

suite12. It is a development environment and testing framework using the Ethereum Virtual Machine

(EVM). Additionally, we use Quorum Maker13 (see Figure 5 below), which facilitates the deployment

of smart contracts, offering visualization features to monitor the Quorum blockchain network and

related blocks and transactions. Before we deploy the smart contracts to the blockchain network, we

9 Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io.

10
 https://docs.goquorum.com/en/latest/].

11 Vukolić M. (2016) The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In: Camenisch J.,

Kesdoğan D. (eds) Open Problems in Network Security. iNetSec 2015. Lecture Notes in Computer Science, vol 9591.

Springer, Cham

12
 https://www.trufflesuite.com/

13
 https://github.com/synechron-finlabs/quorum-maker

12

extensively tested them on Ethereum blockchains using two testing solutions: Ganache Cli, as well as

the Ropsten Test Net. Additionally, before being deployed on a larger Quorum Network, we used a

Quorum test network consisting of seven nodes14.

Smart contracts are written in Solidity so it is feasible to migrate from Quorum permissioned

Blockchain Framework to public Blockchain Frameworks (e.g. Public Ethereum Network), since

Solidity is the common programming language to Ethereum based blockchain frameworks.

Figure 5. Details about blocks, transactions, addresses and smart contracts

4. ALASTRIA

Alastria is neither a public-permissionless network nor a private consortium, is a Public-Permissioned

network it means that shares some of the properties of both types of networks, and it also has some

requirements of its own.

Figure 6 describes the prevailing public-permissionless blockchain networks currently in production like
Bitcoin or Ethereum have the very desirable property of being “Trustless”. However, mainly due to the
characteristics of the consensus algorithms used to achieve that property, they suffer from very well
documented scalability problems. There are a lot of efforts being made to solve or alleviate the
scalability problem, but as of today, the problem still exists and permissioned networks will always have
several orders of magnitude better performance.

14
 https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

13

Figure 6. The Trust Continuum

The Problems of the Public-Permissionless blockchain networks are:

 Scalabilty: The networks choose Decentralization and Security over Scalability.

Taking into account the words of Vitalik Buterin describing the “Blockchain trilemma15”, the
trilemma claims that blockchain systems can only at most have two of the following three
properties:

o Decentralization, defined as the system being able to run in a scenario where each
participant only has access to O(c) resources, where c refers to the size of computational
resources available to each node (i.e. a regular laptop or small VPS “Virtual Private
Server”).

o Scalability, defined as being able to process O(n) > O(c) transactions, where n refers to
the size of the ecosystem in some abstract sense.

o Security (or Safety), defined as being secure against attackers with up to O(n) resources

 Transaction Costs: High and Volatile

 Privacy: By default, in public blockchains like Bitcoin or Ethereum, transactions are executed by
all nodes in the network, transactions are globally published and state data is not encrypted in
most applications, so all participants have access to all data stored in the ledger without any
restriction.

15
 https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df

14

Figure 7. Alastria in the Trust Continuum

In Public-Permissioned networks, the objective is to maximize decentralization and safety, even if
this goes to the detriment of scalability. In this context, decentralization typically means the ability
to transact anonymously but safely among individuals without the need for any intermediary acting
as trusted party. It is often the case that the requirement to eliminate third parties is stronger than
the requirement that the system be high-performance so it could be used as a general purpose
transaction mechanism.

In Private Consortiums the objectives are generally different, and instead of trying to eliminate third
parties at all costs, they try to use blockchain technology to improve efficiency and reduce costs of
transaction among the partners composing the consortium. In many private consortiums, they want
a shared database and transaction system so they can eliminate frictions and reduce costs of
reconciliation.

As Figure 6 and Figure 7 describe, Alastria tries to be as public as possible, but without the
disadvantages associated with public-permissionless networks.

As mentioned before, Alastria is not a Private Consortium but a Public-Permissioned network
compatible with regulation instead. At a very high-level, the characteristics of Alastria are the
following:

 It’s permissioned, so every participant node has to be identified before it can participate in
the network.

 No cryptocurrency embedded.

 A more efficient consensus algorithm, enabling higher performance and scalability.

 Transaction finality in one block, enabling legal validity of executed transactions.

 Implements legal identities of all participants.

15

For further information check the GitHub page of Alastria16.

5. Smart Contracts

Smart Contracts are an instance of a computer program that runs on blockchain. In the case of

permissioned blockchain such as Quorum, where only authorized users are able to interact with the

ledger, an authorized user can create a contract by posting a transaction to the blockchain. It is

important to notice that its code is fixed and cannot be changed after deployment. The code’s execution

is provoked by a received message either from a user of another contract and could provide utility to

other contracts or require assistance from other Smart Contracts.

In this section we describe the different smart contracts developed to support the M-Sec use cases as

well as some of the functionalities they provide.

1) M-Sec Token

A custom token was created specifically for research purposes. It is actually a cryptocurrency in the

form of a smart contract running on Quorum Blockchain. It follows the ERC22317 token standard.

Prelaminar implementations followed the ERC20 token standard but ERC223 is a superset of the

previous standard offering security improvements and more usability and backwards compatibility

with any services and functionalities designed and developed for ERC20. As fully compliant with

ERC223, it implements a set of functions and events, such as name(), transfer(), totalSupply() and

Transfer event which is emitted to the blockchain when an amount of Tokens is transferred from a

user to another. Some indicative developed methods are presented in the following ¡Error! No se

encuentra el origen de la referencia..

This Token has different applications in the use cases. It is firstly used as a payment currency to

exchange value among the users of the Marketplace. Another implementation and configuration of

the M-Sec Token allows us to use it as a “Social Token”. Users of the platform have an initial balance

and particular users are rewarded with more token based on specific criteria such as for example:

i) the most active user,

ii) the most social user,

iii) the user who uploaded the most popular content.

This Token acts as a mean to tokenize a loyalty points program with rewards.

16
 https://github.com/alastria/alastria-platform/blob/master/en/Alastria-Core-Technical-Platform.md#alastria-core-

technical-platform
17

 https://github.com/ethereum/EIPs/issues/223

16

Table 1: Overview of M-Sec Token's functions

contract ERC223 {
 uint totalSupply;
 function balanceOf();
 function name();
 function symbol();
 function decimals();
 function totalSupply();
 function transfer(to, value);
 function transfer(to, value, data);
 function transfer(to, value, data, custom_fallback);
 event Transfer(from, to, value, data);
}

In the following table more details are provided about the developed functions and events of the M-Sec

Token:

Table 2: Detailed presentation of functions and events of M-Sec Token

Name Input Response Description

totalSupply (function) -
uint256

totalSupply
Get the total token supply

Name (function) - string _name Get the name of token

Symbol (function) -
bytes32

_symbol
Get the symbol of token

Decimals (function) - - Get decimals of token

balanceOf (function) address _owner
uint256

balance

Get the account balance of an

account with address: address

_owner

transfer (function)
address _to,

uint _value
boolean

Transfer tokens, compatibility

with ERC20

transfer (function)

address _to,

uint _value,

bytes _data

boolean

function that is always called

when someone wants to transfer

tokens. This function must

transfer tokens and invoke the

function tokenFallback if _to is a

contract.

Transfer (event)

address indexed

_from, address

indexed _to,

uint256 _value,

bytes _data

-

Triggered when tokens are

transferred and is emitted to the

blockchain network

tokenFallback address _from, - A function for handling token

17

(function) uint _value,

bytes _data

transfers, which is called from

the token contract, when a token

holder sends tokens

2) Item Manager Smart Contract

The Item Manager Smart Contract allows the interaction of item/content creators (e.g. photos,

multimedia items, sensor data etc.) with the platform and the blockchain. A user is able to upload all

the information and metadata related to an item. To this direction, we have created dedicated

structs (Figure 8), which are a special feature of Solidity contract-oriented programming language, in

order to store for each item, the details (e.g. tags, information, metadata) and the unique address of

its owner.

struct item {
 address owner;
 string URI;
 uint256 price;
 string tag;
 string info;
}

Figure 8. Item Manager Smart Contract

3) Sensors Smart Contract

This smart contract records all the registered IoT sensors. It gives the possibility to register a sensor

and to change its information afterwards as well. Dedicated Solidity structures were created to store

this information and functions to allow its retrieval.

A structure that allows the storing of the information is the following:

struct sensor {

address sensor-Owner ;

uint8 type-of-Sensor ;

uint MSec-Token-Price ;

uint32 timestamp-of-start ;

uint16 frequency ;

int32 latitude ;

18

int32 longitude ;

string url ;

}

Figure 9. Sensors Smart Contract

4) In the following Table 3 more details are provided regarding our Sensors Smart Contract:

Table 3: Sensors Smart Contract details

Name Input Response Description

registerSensor

(function)

address sensor-

Owner

uint8 type-of-Sensor

uint MSec-Token-

Price

uint32 timestamp-

of-start

uint16 frequency

int32 latitude

int32 longitude

string url

Boolean

success

Registration of a sensor to the

dedication structure of the smart

contract with the related

information. Upon registration a

verification of registration is

returned

changeSensorInfo uint8 type-of-Sensor

uint MSec-Token-

Price

uint32 timestamp-

of-start

uint16 frequency

int32 latitude

int32 longitude

string url

Boolean

success

The owner of the sensor changes

some of the fields for example

the price in M-Sec Tokens or its

position

BuySensorData Uint32 sensorID

uint32 fromTime

uint32 toTime

 This function is called when a

user wishes to buy data for a

specific time interval and

communicates with M-Sec Token

to perform this transaction

19

It is important to notice that functions like changeSensorInfo succeed only when the owner of the sensor

(specific address) attempts to change the fields, otherwise the access is denied.

The function BuySensorData directly communicates with M-Sec Token smart contract, when a user wishes to

buy data for a specific period. If the user has sufficient funds and the information is correct then the

transaction will be successfully completed. Upon success the event Transfer is emitted to the network

informing the users who watch the smart contracts that this transaction took place.

5) Know Your Customer Smart Contract

A huge number of financial banking transactions takes place every day. It is indicative that in July

2019 the Society for Worldwide Interbank Financial Telecommunication (SWIFT) recorded an

average of approximately 32 million transactions per day. Blockchain can enable parties with no

particular trust in each other to exchange digital data on a peer-to-peer basis with fewer or no third

parties or intermediaries. In the recent report Scientific and Technical Research Report of European

Commission on Blockchain18, the need for Know Your Customer mechanisms is highlighted: “the

obligation of cryptocurrency exchanges and custodian wallet providers within the scope of EU

regulation to implement mechanisms to counter money laundering and terrorist fundraising, such as

‘know your customer’ (KYC) “.

It is evident that previously mentioned works involve value exchange through blockchain

transactions and dedicated created smart contracts, making Know Your Customer process necessary.

In this direction, we are presenting an approach which blends smart contracts for exchanging value

in the IoT domain on a decentralized manner, integrating a KYC process handling on chain and off

chain data.

Recent works have tried to tackle the problem of data management and KYC for blockchain

applications. Shabair et al.19 introduced a blockchain-based KYC proof of concept system and an

orchestration tool for managing private blockchain environments over large scale test beds. In their

work they highlight the need for additional research on security and privacy issues of blockchain

applications. Norvill et al.20 presented a demo of a system that allows automation and permissioned

document sharing in order to simplify and reduce the work required by the KYC process, while Zhang

and Yin21 conducted a research on a digital copyright management system based on blockchain

18
A. Anderberg et al., “Blockchain Now And Tomorrow,” 2019.

19
 W. Shbair, M. Steichen, and J. François, “Blockchain orchestration and experimentation framework: A case study of

KYC,” in The First IEEE/IFIP International Workshop on Managing and Managed by Blockchain (Man2Block) colocated
with IEEE/IFIP NOMS 2018, 2018.
20

 R. Norvill, M. Steichen, W. M. Shbair, and R. State, “Blockchain for the Simplification and Automation of KYC Result
Sharing,” in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 9–10.
21

 X. Zhang and Y. Yin, “Research on Digital Copyright Management System Based on Blockchain Technology,” presented
at the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Chengdu, China, 2019.

20

technology. They focused mostly on PBFT (Practical Byzantine Fault Tolerance) consensus

mechanism improved by Tendermint22 replacing original Ethereum POW (Proof of Work), digital

signatures and smart contracts to design user account management strategies, copyright review and

applications for the needs of digital rights management. In our work we further explore the design

and implementation of smart contracts for the KYC process on a decentralized approach.

Blockchain is beginning to transform industries and there is an increasing interest in exploring its

potential for various production use cases, especially for supporting multi-party processes where

members don’t necessarily trust each other. However, there are many challenges that remain to be

addressed such as trade-offs between respecting privacy and supporting transparency. Bhsaskaran

et al23 described the design of smart contracts for consent-driven and double-blind data sharing on

the Hyperledger Fabric blockchain platform24 into a KYC application, where the data are submitted,

validated and kept within the ledger supporting different consent rules and privacy levels.

Vishwa et al.25 presented a decentralized data management system for data privacy and control

focusing on multimedia files. In their solution they use an external data lake, namely a centralized

data storage solution on a cloud to store the transaction details of all the data added on the

blockchain. In order to access the blockchain, a user signs up by broadcasting his identity and will be

accepted by the consent of the majority of the nodes and will be provided his new identity and

access permissions. In our approach we additionally use IPFS leading to a decentralized application

and have successfully implemented smart contracts and software components, leveraging

blockchain to automate tasks related to KYC process.

Our process of developing the smart contract to support KYC process is described through its use in

the middleware services section.

6) Smart City Data Smart Contract

This smart contract focuses on managing data from the smart cities of Santander and Fujisawa and

support the use cases. It directly communicates with other tools of M-Sec project such as encrypted

data storage and offchain storage. It is an ongoing work and the final results will be described in

details in the next iteration of the of the Deliverable D4.6 from T4.3. Additional flows are created as

part of middleware services to support the interaction and integration with the rest of the platform.

22
 Jae Kwon, “Tendermint: Consensus without Mining.” 2014.

23
 K. Bhaskaran et al., “Double-blind consent-driven data sharing on blockchain,” in 2018 IEEE International Conference

on Cloud Engineering (IC2E), 2018, pp. 385–391.
24

 “Hyperledger Fabric,” Hyperledger
25

 A. Vishwa and F. K. Hussain, “A Blockchain based approach for multimedia privacy protection and provenance,” in
2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 1941–1945.

21

Component Module 3: Middleware Services

This component refers to all the implemented basic blockchain services that include services such as search

and indexing of the P2P network resource, advertising & discovery services, and messaging services for

exchanging messages between the peers.

1. Know Your Customer

Figure 10. Overview of the KYC process for the M-Sec Platform

The KYC service as part of M-Sec Blockchain Middleware Services allows us to have a system where

anonymity is maintained among user choices. The user identification has already been done outside

the blockchain network, while no one inside the blockchain network is aware of the user's real

identity. In this way M-Sec Platform will use KYC service to have services been delivered to users

while hiding their true identity from their service provider or other users.

The M-Sec KYC Solution Concept includes the storage of personal data on an offchain database while

the user is able to connect to the M-Sec Platform (and the blockchain network) using a special ID not

relevant to his real identity. So the User Verification is conducted by an External Certificate Authority

before accessing the system while the user uses the hash ID provided to him to interact with the

System, as shown in the Figure 10.

Additionally, we have integrated the feature of the Expiration date. The System maintains an Expiry

Date of users in the blockchain network. This information is stored within the smart contracts not in

an external centralized database.

22

2. IPFS: InterPlanetary File System

Aiming to a more decentralized design we integrated blockchain with IPFS, a peer-to-peer version-

controlled protocol and filesystem, run by multiple nodes, storing files submitted to it26. It combines

distributed Hash Tables, Block Exchanges and Merkle Trees.

Using middleware, users are able to upload content to IPFS and place its unique hash code (address

of the file) to the smart contracts running on Quorum blockchain. If we use a central database for

storage, we benefit from the high throughput but this centralization does not coincide with the

decentralized nature which blockchain advocates leading to a Single Point of Failure (SPOF) of the

whole application. Facing the aforementioned drawback, IPFS being a peer-to-peer (p2p) file sharing

system and Blockchain’s complementary component, settled exceptionally the SPOF problem,

furnishing low latency and data distribution.

3. On-chain, off-chain data and access control

One of our goals is to design a blockchain-based decentralized content marketplace, which enables

trustless disintermediation between sensor owners (and more generally data owners) and

consumers. Using a dedicated created cryptocurrency (M-Sec Token) for payments, a consumer can

buy data on the marketplace without involving a marketplace intermediary. This refers to the

research and development of data privacy-enhancing mechanisms along with data access control

and privacy policies that are necessary for the M-Sec framework. Moreover, it deals with the

separation of data, meaning to identify what needs to be pushed on blockchain and what to remain

off-chain, a decision that is always critical when designing blockchain platforms

4. Transaction Handler

One of the main and most important features of the Quorum is the private transaction mechanism.

Transaction privacy is achieved by using the Ethereum Transaction Model and enhancing it with new

parameters that specify the nodes in which the transactions should be published. The Constellation

layer of Quorum that contains the transaction Manager and Enclave module is responsible for the

private transaction handling. All the public transactions follow the already established p2p Ethereum

network flow.

Additional mechanisms are implemented that:

i. allow only authorized users to commit a transaction and have access to the blockchain,

ii. verify the identity of user using cryptography algorithms,

iii. in case he is about to receive some data/service in exchange of M-Sec Tokens it is

verified that he has already made the purchase.

26
 Chen, Y., et al.: An improved P2P file system scheme based on IPFS and Blockchain. Big Data (Big Data), IEEE

International Conference on (2017).

23

The Transaction Handler could be regarded as a flow providing a layer before blockchain that

performs a first process of the potential transactions to formulate them and optimize and verify

the content to be inserted in the blockchain.

5. Upload Handler

This part of the Middleware Services provides functionalities for efficiently performing actions

related to Assets. As an asset we could consider a file, a multimedia item, a dataset that could be

described with a predefined set of fields such as:

i. Title

ii. Timestamp of start

iii. Timestamp of end (whether applicable)

iv. Owner/Creator name (or Address)

v. Price in M-Sec Tokens

vi. Description

vii. Location (latitude and longitude)

viii. URL related to the storage of the asset

All these functionalities are related to Smart Contracts in which we have defined Solidity structs

keeping record of uploaded assets/items and we have additionally define related fields for

metadata. These functionalities include:

i. Uploading of an item by providing its details, as specified previously so it can be

registered to the Item Manager Smart Contract.

ii. Browsing through all the available items registered in the smart contract.

iii. After specifying some criteria, the user is able to view an asset and its metadata.

6. Write/Update Metadata of Asset

This service is strongly connected to the Transaction Handler. As an indicative case, only the

authorized users are allowed to update the metadata of an item. The user who has the right to

update is the owner of the item or a user with a specific permission. The service handles the

communication with the smart contracts and checks the rights of a user.

24

2.2 Package Information & Installation Instructions

Required Tools and dependencies

 Truffle Suite

 Solidity Programming Language

 Quorum Blockchain

Install Truffle Suite

Truffle suite:

npm install truffle -g

More installation instructions could be found in the following link: https://www.trufflesuite.com/truffle

Install Solidity

Ethereum, "Solidity," Ethereum, [Online]. Available: http://solidity.readthedocs.io.

Install Quorum Blockchain Network

https://github.com/synechron-finlabs/quorum-maker

https://github.com/jpmorganchase/quorum-examples/tree/master/examples/7nodes

Licensing

Quorum, the go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU

Lesser General Public License v3.0

Solidity is licensed under GNU General Public License v3.0

25

3. Demonstration 2: IoT Marketplace

The goal is to create decentralized IoT ecosystems and validate their viability and sustainability. To this

direction we define and implement a novel marketplace where smart objects can exchange information,

energy and services through the use of virtual currencies allowing real-time matching of supply and demand

enabling the creation of liquid markets with profitable business models of the IoT stakeholders. In this

section we cover the basic technical implementation details of the M-Sec marketplace: market participants,

from IoT devices to humans using mobile applications are able to exchange data and value through the M-

Sec blockchain implementation.

3.1 General Description of the Prototype

Figure 11. Overview of the M-Sec IoT Marketplace and its components

In the previous Figure 11, we can see an overview of the developed marketplace and its components,

explained in detail through for a specific example use of it.

1. The owner of a sensor/data source who wishes to make his data available for purchase or exchange

register himself to the dedicated created smart contract providing information about the type of the

data, their frequency, the price, the location etc.

26

2. A User of the M-Sec Platform who acts here as a potential buyer using our developed front end can

see all the available sensors and their data

3. Upon finding some interesting data he/she can retrieve additional detailed descriptions about them

and then

4. Buy the data of interest using M-Sec Tokens, which is a cryptocurrency in the form of a smart

contract running in on blockchain presented in previous section

5. The deployed smart contracts communicate with each other to verify the sufficient funds of the

buyer and complete the purchase by transferring funds from the balance of the buyer to the one of

the data owner. The developed Node-Red flows also assist in this process connecting the different

components of the system

6. In the case of successful payment, when the buyer has sufficient funds and after the tokens are

transferred, a passcode is returned to the buyer necessary for accessing the purchased data

7. The buyer communicates with the platform and the API of the data owner and using the transactions

details requests the data

8. The desired data is returned to the buyer in a predefined format such as JSON

27

Components

Component Module 1: Node-Red Flows

In order to orchestrate the different components and services we have used Node-Red and have developed

several flows. Node-Red is a powerful visual tool for wiring together hardware devices, APIs and web-

services, create flows that connect distributed components into a common IoT application27.

We developed different flows for the different parts of the IoT Marketplace.

During the development of the system we simulated the IoT weather sensors provided by public APIs and for

this simulation we used an API provided by Dark Sky28. Using Node-RED features we created flows that

request current weather data for several locations from the Dark Sky API and then save these data (air

temperature, relative humidity, pressure, visibility, wind speed and direction, sky cloud coverage, dew point,

UV radiation and the columnar density of total atmospheric ozone layer) into a local database. We also

exposed a RESTful API in order to serve the data to the users when requested. When a request is received,

the API key is checked. If it is correct, the data responding to the specified time intervals is retrieved from

the database and then sent to the requester.

Figure 12. Node-Red Flow for the simulation of IoT sensor data

Component Module 2: Blockchain Smart Contracts

Different smart contracts are implemented in the programming language Solidity to support the different

use cases.

Some of the developed smart contracts were described in detail previously:

1. M-Sec Token: Digital cryptocurrency in the form of a smart contract in Solidity language running on

blockchain.

27
 https://nodered.org/docs/

28
 The Dark Sky Company, LLC, "Dark Sky," The Dark Sky Company, LLC, [Online]. Available: https://darksky.net/dev

28

2. Sensors Smart Contract: responsible for registering sensors and recording transactions for IoT sensor

data

3. Smart City Data Smart Contract: responsible for handling data from Smart Cities

Component Module 3: Web Application

This web application provides interfaces between the users and the blockchain. It provides functionalities

helping users interact with the smart contracts deployed on Quorum Blockchain and access data they have

bought. It also allows sending transactions to and reading data of transactions and smart contracts. It also

“protects” users from misreading or mistyping info when sending a transaction.

We have used different languages and technologies to create these interfaces such as JavaScript, Bootstrap,

HTML, jQuery, Nodejs. Some of the developed interfaces are described below with screenshots and details.

We have used Web3.js to interact with the deployed smart contracts.

The user searches in all the available sensors registered in the Smart Contracts the sensors of interest

specifying details in the corresponding fields such as the location, the type the data (temperature, starting

date and time, frequency etc.), as shown in Figure 13.

‘

Figure 13. Graphical User Interface enabling searching of sensors in the smart contracts running on blockchain

After specifying all the required information, a query is submitted to the smart contracts running on the

Quorum blockchain and a list of all the available sensors is returned with information of the address of the

data owner, the sensor type (temperature, pressure, visibility etc.), the frequency, a link opening a map and

the option for the user to buy these data using M-Sec Tokens, as shown in Figure 14.

29

Figure 14. Graphical User Interface of the returned results after the query to the smart contract

An overview of the blockchain and the transactions included in each block is provided in our developed

Explorer interface,as shown in Figure 15. The user is able to search for specific blocks, transactions, users,

contracts and see the related activity.

Figure 15. Graphical User Interface of the Explorer

3.2 Package Information & Installation Instructions

Required Tools and dependencies

The following tools and dependencies are required to install and use the IoT Marketplace:

 NodeRed

 Nodejs

 MySQL

 Ethereum/Quorum Blockchain

 Nodejs and Javascript

30

Install NodeRed

 Node-Red: Node-RED is a powerful visual tool for wiring together hardware devices, APIs and web-

services, create flows and connect distributed components into a common IoT application

[https://nodered.org/].

o Installing Node-Red: The easiest way to install Node-RED is to use the node package

manager, npm, which comes with Node.js [https://nodered.org/docs/getting-

started/installation]. Installing as a global module adds the command “node-red” to your

system path:

 For Ubuntu:

 sudo npm install -g --unsafe-perm node-red

 For Windows, execute CMD with administrator rights and then execute:

 npm install -g --unsafe-perm node-red

o Version: We have installed Node-Red v0.17.5

o Running: after installing Node-Red as a global npm package, open a terminal and run the

“node-red” command. You can then access the Node-RED editor by pointing your browser

at: http://localhost:1880

o After accessing the editor, you have to left click on the menu button (three lines on the top

right corner), then click on manage palette, switch to the install tab and search for the node-

red-contrib-neo4j package and install it. This will add the node required by our flows

ensuring the dependency.

Install Nodejs

 Node.js: Before installing Node-Red, a Node.js installation is required. We have installed Node.js

version v8.9.3.

o On Ubuntu machines we have to run the following commands:

 sudo apt-get update

 sudo apt-get upgrade

 sudo apt-get install node.js -y

 sudo apt-get install npm -y

o On Windows machines we can download the appropriate installer from

https://nodejs.org/en/download and execute it.

Install MySQL

 We used the MariaDB SQL, but any other SQL relational database can be used. Full instructions of

how to install MariaDB database can be found here: https://downloads.mariadb.org/.

Install Front End

 Front End: We have developed a web front end, useful for end users of our application. It provides a

Graphical User Interface

o Based on HTML, Javascript, Vue Javascript framework and other libraries

o Running: it is deployed on our server (and cloud servers as well) and accessible in http://snf-

755174.vm.okeanos.grnet.gr

31

Install Java

 Most of the systems used are built on top of java engines so a Java distribution needs to be installed

in the system before anything else.

o On Ubuntu machines a simple list of commands is enough to install the latest distribution of

Java:

 sudo add-apt-repository ppa:webupd8team/java

 sudo apt-get update

 sudo apt-get install -y oracle-java8-installer

 sudo apt-get update

o On Windows machines we have to download the appropriate installer from

https://java.com/en/download and execute it

Install Ethereum/Quorum Blockchain

Instructions are provided in the previous Section related to the Blockchain demonstrator.

Operating System

 We have tested the platform on Windows 10 and Ubuntu 18 but all of the software listed here is

available in a large number of other distributions.

Okeanos

 Okeanos: We have deployed our Node-Red and Neo4j services to Okeanos cloud service for Greek

Research and Academic Community

o https://okeanos.grnet.gr/home/

Licensing (if applicable)

Since ICCS/NTUA is a non-profit Academic Research Body, we will be releasing all related M-Sec results as

open source contributions under Open Source licenses. Concretely, permissive licenses, as are not restrictive

licenses and it can be used to create a proprietary good, allowing a commercial exploitation and ensuring

high impact. Examples of those are: Apache, BSD, etc.

32

Demonstration 3: Trust & Reputation

Management

3.3 Introduction

Trust and Reputation (T&R) models have been proposed by many researches as an innovative solution for
guaranteeing a minimum level of security between two entities of a distributed system that want to have a
transaction or interaction. Thus, many studies, works and models have been designed, carried out and
developed in this direction, leading to a current solid research field on which both academia and industry are
focusing their attention. Many methods, technologies and mechanisms have been proposed in order to
manage and model trust and reputation in systems such as P2P networks29, ad-hoc ones30, wireless sensor
networks31 or even multi-agent systems32. Such methods have been used in many environments like P2P
networks, Wireless Sensor Networks (WSN), Vehicular Ad-hoc Networks (VANETs), Identity Management
Systems, Collaborative Intrusion Detection Networks (CIDN), Cloud Computing Systems, Application Stores
and of course the IoT.

T&R management is a very useful and powerful tool in environments where a lack of previous knowledge
about the system can lead participants to undesired situations, specifically in virtual communities where
users do not know each other at all or, at least, do not know everyone. It is in those cases where the
application of trust and reputation mechanisms is more effective, helping a peer to find out which is the
most trustworthy or reputable participant to have an interaction with, preventing thus the selection of a
fraudulent or malicious one. Most of the current T&R models in the literature follow four general steps
which are described by Marti and Garcia-Molina33 (Figure 15):

1. Collecting information about a certain participant in the community by asking other users their opinions
or recommendations about that peer.

2. Aggregating all the received information properly and somehow computing a score for every peer in the
network.

3. Selecting the most trustworthy or reputable entity in the community providing a certain service and
effectively having an interaction with it, assessing posteriori the satisfaction of the user with the
received service.

4. Punishing or rewarding according to the satisfaction obtained, adjusting consequently the global trust
(or reputation) deposited in the selected service provider.

5.

29
 F. Almenarez, A. Marin, C. Campo, C. Garcia, “PTM: a pervasive trust management model for dynamic open

environments”, First workshop on pervasive security and trust, Boston, USA; 2004.
30

 M. Moloney, S. Weber, “A context-aware trust-based security system for ad hoc networks”, Workshop of the 1st
International Conference on Security and Privacy for emerging areas in communication networks, Greece; 2005, pp.
153–60.
31

 Boukerche, L. Xu and K. El-Khatib, “Trust-based security for wireless ad hoc and sensor networks”, Computer
Communications 2007.
32

 J. Sabater and C. Sierra C, “REGRET: reputation in gregarious societies”, Proceedings of the 5th International
Conference on Autonomous Agents, Canada, 2001.
33

 S. Marti and H. Garcia-Molina, “Taxonomy of trust: categorizing P2P reputation systems”, Computer Networks 2006.

33

Figure 16: General steps followed in T&R models.

Currently, the idea of using a T&R engine on top of the Blockchain Middleware Services and the IoT
Marketplace (already described in the previous sections) is being investigated. Such an engine would
enhance the security mechanisms of M-Sec and make it possible to evaluate the actual content being shared
through the Blockchain and the Marketplace, thus ensuring the trustworthiness of the several actors
participating in the exchange or sharing of information, data and services.

The M-Sec T&R model (M-Sec T&RM)

Different models manage concepts such as Trust or Reputation in many different ways. Although there are
some generic data structures for the domain of T&R provided for example by the Open Reputation
Management Systems (ORMS) of OASIS34, there are no standards for concepts like Trust and Reputation. In
this subsection we try to provide some clear definitions of the main concepts that build up the M-Sec T&R
model, and the main features that characterize it. In M-Sec T&RM we define Trust and Reputation as
follows:

 Trust: The expectation that an interaction will be satisfactory based on our personal experience.

 Reputation: The belief that an interaction will be satisfactory based on the experience of our social circle.
Node A will have a high Trust index for Node B if the services provided from Node B to Node A have been
evaluated from Node A positively. Node A will have a high Reputation index for Node B if the services
provided from Node B have been evaluated from the social circle of Node A positively.

Definitions

The distinction between a trust and a reputation model is not always clear. However, in our opinion, those
models making an explicit use of other participants’ recommendations could be categorized as reputation
models while the rest could be considered just as trust models.

Let’s assume that actor-1 wants to find out some social characteristics of actor-2 for a specific service
offered. The following terms can then be defined:

34
 OASIS: https://www.oasis-open.org/committees/orms

34

 Popularity (P): A counter which monitors how many times actor-2 has received or may receive a request
(how many “hits” it has). The Popularity Index is an accumulative and comparative indicator, and is used
to determine the stability of Reputation and Trust.

 Trust (T): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous
interactions of actor-1 with actor-2. The Trust Index of actor-2 provided by actor-1 is a property which
states how many times actor-2 has successfully shared its services with actor-1. Trust is “subjective”,
because it is estimated from perspective of the individual trustor (actor-1 in this case).

 Reputation (R): The belief of actor-1 that actor-2 is going to deliver the correct service based on previous
interactions of other actors. The Reputation Index can be calculated from the Trust that other actors
(apart from actor-1) have on actor-2. In other words, this metric determines the belief of others on an
actor and is useful especially when actor-1 does not have enough data to extract a Trust Index for actor-2
(because e.g. there are no interactions between the two actors yet).

 Reliability (R’): An absolute indicator of the performance of the actor that quantifies its efficiency to offer
successfully its services relatively to its ideal or normal operation. The Reliability Index should be based
on criteria like: response time upon request, ability to communicate, quality of service provided, etc.

 Dependability (D): A social measure combining all the above social measures. It can be simply derived by
the expression 𝑫 = 𝒂 ∙ 𝑻 + 𝒃 ∙ 𝑹 + 𝒄 ∙ 𝑹′ + 𝒅 ∙ 𝑷 where a, b, c and d (non-negative integers) are the
weights of the measures and 𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏. For this calculation, Popularity has to get normalized.
By selecting the appropriate weights, we can provide the expression of the Dependability Index that we
want. For example, when there are only a few interactions between actor-1 and actor-2, then the Trust
Index should have a low weight and the Reputation Index should have a high weight. This means that the
weights should change dynamically and be set according to the users or developers preferences.

General Features

Reputation connects closely to the concept of Trust, but there is a clear difference, which can be illustrated
by the following two scenarios:

 Actor-1 trusts actor-2 because Actor-2 has a good Reputation. This reflects that Reputation can be used
to build Trust.

 Actor-1 trusts actor-2 despite the bad Reputation of Actor-2. This reflects that even if actor-1 knows the
Reputation of actor-2, actor-1 has its own private knowledge (e.g. direct experience with actor-2) which
is considered to be more important.

Generally, an actor can be evaluated only by information gathered from other actors. Its Dependability can
be calculated by each and every other actor of the community (a subjective estimation) or by the whole
system (a more, but not totally, objective estimation). Depending on its (subjective or objective). Both big
and small time-windows are used to quickly detect malicious or unsatisfactory behaviour and avoid the fast
redemption of blacklisted actors. Moreover, feedback from recent interactions has a higher weight than this
of older actions.

Benevolent actors should have more opportunities than newcomers. As a result, newcomers with 0
interactions with other actors will have Reputation equal to 0. However, an extra rule has to be applied to
the model we have designed to give the opportunity to newcomers that have a low Reputation (because of
the small number of interactions with other actors) to be chosen as service providers at some point and start
building their Reputation. For example, 10% of the recommendations from the platform should introduce
newcomers to the rest of the community. The same applies for actors which have low Reputation due to
malicious or unsatisfactory behaviour in the past. In other words, this rule enables the social integration and
reintegration of the actors to the system. Moreover, this rule is necessary for the first moments of the social
community that may be born from M-Sec, as the network, at its initial state, will not have any actors with
high Reputation.

35

It should be noted that, in contrast with many T&R models, we choose to use different Trust and Reputation
scores for different services provided by the members of the network. This feature helps as face quite many
security threats. For example, abuse of a high achieved Reputation is easily avoided.

Calculation of Trust & Reputation

In M-Sec T&RM, only the idea of subjective Trust is modelled, as we claim that subjectiveness is embedded
in Trust’s meaning. Strong Trust on an actor cannot and should not be affected by claims of a third party. In
order to model Trust, the experiences based on which the Trust is calculated need to be modelled. Thus, we
need memory. For that purpose, the M-Sec Blockchain can be used to store the “social” interactions
between actors and the evaluations of the corresponding services. Some crucial attributes that have to be
stored in these Log Files are:

 Satisfaction (s): This value is essentially a subjective QoS indicator. The Satisfaction is automatically
derived by the absolute values of the service based on their correctness. For example, a sensor that
suddenly reports a really high temperature will be assigned a satisfaction rating based on the correctness
of this report. If there is a fire, the Satisfaction is high, but if the is not, the Satisfaction is zero. Since an
actor that regulates the alarms can consult more than one sensors, a malicious or faulty sensor will
quickly lose any trust. If the sensor is fixed, the Social Reintegration part of the system will allow it to
build trust again.

 Weight (w): This is a value indicating how crucial the service is for the well-being of the actor. It is used in
order to prevent a malicious actor from providing a minor service well and then exploiting the built Trust
and providing a crucial service poorly. Due to this value, it is difficult for the Trust index to increase just
because of minor services, whereas it can drop quickly in case of a crucial service with low quality.

 Fading factor (f): When new interactions take place, the importance of older ones should decrease. The
fading factor addresses this issue and forces peers to stay consistent with their previous behaviour. Old
interactions have lower fading factor values, so an actor cannot misbehave relying on its good history.
The fading factor makes the Social Reintegration of ex-malicious nodes possible, meaning that if they
become benevolent, it is possible for them to get a second chance and form new ties with the network.
Of course multiple incidents of misbehaviour can get an actor permanently black-listed. This fading factor
can be set by the system administrator so that the actors take under consideration the last N interactions
with any other actor.

When an actor wants to calculate the Trust Index of another one, it looks into the appropriate Log Files in
the Blockchain and calculates the trust value as the weighted average of the log entries using:

𝜇𝑡
𝑘 =

∑ (𝑠𝑖 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁
𝑖=1

𝑊
 (1)

where W is the normalization co-efficient which ensures that the trust value will be between [0,1] and is
calculated by:

𝑊 = ∑ (𝑤𝑖 ∙ 𝑓𝑖)
𝑁

𝑖=1
 (2)

The mean value (μ) is a measure of the overall observed behaviour of the actor and indicates the expected
satisfaction value of the next interaction. However, it is needed to know how confident we can be about the
value of μ i.e. how much the satisfaction from the service may actually deviate from μ. Thus, the standard
deviation (σ) of the behaviour is also calculated. To reduce the computational overhead, the calculation of
the later occurs simultaneously with the calculation of the mean value following the formula:

36

𝜎𝑡
𝑘 =

√∑ (𝑠𝑖
2 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁

𝑖=1 ∙ 𝑊 − (∑ (𝑠𝑖 ∙ 𝑤𝑖 ∙ 𝑓𝑖)𝑁
𝑖=1)

2

𝑊
 (3)

Finally, we define Trust as:

𝑻𝒌 = 𝝁𝒕
𝒌 − 𝝈𝒕

𝒌 (𝟒)

To sum up, μ shows the satisfaction that actor-1 should expect from actor-2, while σ shows how predictable
the behaviour of actor-2 is. This means that if T = 0.5 then there is an 84% probability that the satisfaction
for the service will be 0.5 or greater. That way the service providers that are not consistent and have an ever
changing and oscillating behaviour will have lower Trust indexes even if their μ value is higher.

Figure 17: Calculation of the Trust Index of an actor.

Similar approach is being followed to calculate the Reputation Index, although this metric needs to extract

more interactions logs from the Blockchain.

3.4 Testing

TRMSim-WSN

In order to test our T&R model, we used TRMSim-WSN35, a simulator for T&R models. The TRMSim-WSN is a

Java-based T&R models simulator aiming to provide an easy way to test a trust and/or reputation model

over WSNs and to compare it against other models.

The TRMSim-WSN is, as far as we know, the state-of-the-art simulation platform for confidence-renowned

systems. It is aimed at simulating algorithms for reputation and trust management in WSN systems, but the

same principles can apply to IoT systems in general. The simulation can be run over a single randomly

generated WSN or over a set of networks. The user is able to define parameters of the network, such as the

percentage of clients and that of malicious nodes. Network topologies may also be loaded from and saved to

XML files. Sample trust and reputation models have been included and an API is offered which provides a

template for the users to help them easily load new T&R models to the simulator36. For the tests, parameters

that can be configured are: number of executions, number of random networks to be tested, % of Malicious

Actors, Collusion between Malicious Actors, Oscillating behaviour of actors, etc.

35
 F. G. Marmol and G. M. Perez, “TRMSim-WSN, Trust and Reputation Models Simulator for Wireless Sensor

Networks”.
36

 F. G. Marmol, “Implementing and Integrating a new Trust and/or Reputation Model in TRMSim-WSN”.

37

To evaluate our T&R model we compared it with three predominant (as of today) T&R models (Eigentrust,

PeerTrust and PowerTrust) as well as with a relatively new system known as BTRM (Bio -Inspired Trust and

Reputation Model) that applies a biological algorithm known as Ant-Colony System.

Figure 18: TRMSim-WSN.

We run simulations both in simple networks and in networks with dynamic entry or oscillating behaviour of

actors. Measurements of the average satisfaction were made at various percentages of malicious actors

(10%, 50% and 90%). The results are given in the next figure.

Figure 19: Normal Network Comparison

From the above, it can be seen that our models performance is comparable to that of the over models (and

in some cases better).

38

During Y2, we are planning to continue the simulations for our T&R model, focused not only on the average

satisfaction metric, but also on other important characteristics, such as scalability of the system. Once this

level is completed, depending on the results, the model will be implemented as a mechanism on top of the

M-Sec Blockchain and Marketplace and be tested accordingly.

39

4. Conclusion

In the previous section we presented three different demonstrators as part of T4.3.

In our next steps we are going to further explore the potential of smart contracts to support the different M-

Sec Use cases and integrate middleware services with the rest of the components.

Trust levels over a trustless IoT infrastructure will be further researched in order to allow the convergence of

the specific implementations in a broader smart city context. Blockchains will be studied also as a technology

foundation upon which values can be exchanged in an IoT infrastructure, enabling thus devices to buy

services from other devices.

Finally, a model that integrates Trust and Reputation model within IoT Marketplace and smart contracts will

be further examined.

