Dataset Open Access

Reliance on Science in Patenting

Marx, Matt; Aaron Fuegi


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4235193</identifier>
  <creators>
    <creator>
      <creatorName>Marx, Matt</creatorName>
      <givenName>Matt</givenName>
      <familyName>Marx</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6173-4142</nameIdentifier>
      <affiliation>Boston University</affiliation>
    </creator>
    <creator>
      <creatorName>Aaron Fuegi</creatorName>
      <affiliation>Boston University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Reliance on Science in Patenting</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>innovation, patenting, science, citation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-10-13</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4235193</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3236339</relatedIdentifier>
  </relatedIdentifiers>
  <version>v29</version>
  <rightsList>
    <rights rightsURI="https://opendatacommons.org/licenses/by/1.0/">Open Data Commons Attribution License v1.0</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset contains both front-page and in-text citations from patents to scientific articles. &amp;nbsp;&lt;em&gt;If you use the data, please cite &lt;/em&gt;these two articles:&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;1. M. Marx, &amp;amp; A.&amp;nbsp;Fuegi, &amp;quot;Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles&amp;quot; (2020),&amp;nbsp;&lt;em&gt;Strategic Management Journal 41(9):1572-1594&lt;/em&gt;. (&lt;/strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145"&gt;https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145&lt;/a&gt;&lt;strong&gt;)&amp;nbsp;&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;2. M. Marx &amp;amp; A. Fuegi, &amp;quot;Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations.&amp;quot; NBER Working Paper&amp;nbsp;27987&lt;/strong&gt;.(&lt;a href="https://www.nber.org/papers/w27987"&gt;https://www.nber.org/papers/w27987&lt;/a&gt;)&lt;/p&gt;

&lt;p&gt;The datafile containing the citations is &lt;strong&gt;_pcs_mag_doi_pmid.tsv.&amp;nbsp;&lt;/strong&gt;DOIs and PMIDs provided where available. Each citation has the&amp;nbsp;applicant/examiner flag, confidence score&amp;nbsp;(1-10), and&amp;nbsp;whether the reference was a) only on the front page, b) only in the body text, or c) in both.&amp;nbsp;&lt;strong&gt;_data_description.pdf&lt;/strong&gt;&amp;nbsp;has full details.&amp;nbsp;&lt;strong&gt;bodytextknowngood.tsv&lt;/strong&gt;&amp;nbsp;contains the known-good references for calculating recall. &lt;strong&gt;bodytextpatrefstopatents.tsv&lt;/strong&gt;&amp;nbsp;contains references to patents in the body text of patents.&lt;/p&gt;

&lt;p&gt;The remaining files redistribute the&amp;nbsp;&lt;a href="http://aka.ms/msracad"&gt;Microsoft Academic Graph&lt;/a&gt;. Please also cite&amp;nbsp;Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW &amp;rsquo;15 Companion). ACM, New York, NY, USA, 243-246.&lt;/p&gt;

&lt;p&gt;These data are under an&amp;nbsp;Open Data Commons Attribution license (ODC-By);&amp;nbsp;use them for anything&amp;nbsp;as long as you cite us! Source code for front-page matches:&amp;nbsp;&lt;a href="https://github.com/mattmarx/reliance_on_science"&gt;https://github.com/mattmarx/reliance_on_science&lt;/a&gt;. Questions &amp;amp; feedback to &lt;a href="mailto:support@relianceonscience.org"&gt;support@relianceonscience.org&lt;/a&gt;&lt;em&gt;.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["Marx, Matt and Aaron Fuegi, \"Reliance on Science in Patenting: USPTO Front-Page Citations to Scientific Articles\" (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686)", "Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). ACM, New York, NY, USA, 243-246"]}</description>
  </descriptions>
</resource>
16,958
32,443
views
downloads
All versions This version
Views 16,9581,484
Downloads 32,4431,607
Data volume 107.4 TB2.2 TB
Unique views 13,6181,383
Unique downloads 10,124949

Share

Cite as