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User-independent classification of emotions in a 
mixed arousal-valence model

Abstract—In this work we classified EEG features connected 
with emotions elicited by musical videos. To detect emotions, we 
used a user-independent approach with data coming from 
multiple participants in order to test the “peak-end rule”. 
Participant’s video ratings were processed to create a mixed 
valence-arousal labelling. Input features were refined using a 
combination of feature ranking and data reduction based on 
intrinsic dimensionality search. Compared to previous literature, 
our results show that the proposed mixed arousal-valence 
classification is compatible with previous works applying a 
distinct arousal or valence classification.

Keywords—EEG, emotion recognition, human-computer 
interaction

I. INTRODUCTION 

Affective computing is an already stablished area of 
Human-Computer Interaction (i.e. HCI) [1]. In this field, 
electroencephalography (EEG) is commonly selected by 
researchers for measuring emotional states because it has a 
high temporal resolution, it is not invasive and it is wearable. 

Emotion recognition through EEG could be used in various 
HCI scenarios like entertainment, e-learning, virtual worlds 
[2], or e-healthcare applications [3]. A person’s inner 
emotional state is a complex summation of different 
components connected with subjective experience and 
physiological response to a stimulus. In a general view, 
emotions are a large category that encloses mood, feelings and 
affects. In the present study, we analyze emotions under the 
theoretical framework of the “Circumplex model of affect” [4] 
that maps human emotions using only two indexes: valence 
and arousal. Arousal relates to subjective alertness levels, 
valence is a way to sort a stimulus as pleasant or unpleasant. 

In literature, EEG based approaches for emotion 
classification are defined as either “user dependent” or “user 
independent”. User dependent means that a new model is 
generated for each user and trained/tested on the same user 
data. This kind of models reach higher accuracy of detection 
but lack on generalization. User independent models try to 
extract features from different subjects. They achieve better 
generalization, but their classification accuracy is lower when 
compared to user dependent models. 

In this study, we propose an EEG user independent 
approach to classify emotions. We analyzed data from a public 
domain dataset extracting labels from self-reported emotional 
levels together with EEG features. After this step, we ranked 
the extracted features (feature selection) and classified them 
using several classifiers. We payed special attention to the class 

imbalance problem to avoid overfitting and ran cross-
validation multiple times in order to compare the classifiers’ 
performance.

II. MATERIALS AND METHODS

A. Dataset
We applied our implementation to the DEAP dataset [5]. 

EEG data comes from 32 subjects (16 males and 16 females) 
while watching 40 musical videos lasting 60 seconds. Each 
subject rated the stimuli in terms of valence and arousal. Every 
recording contains 32 EEG channels preprocessed with a 
sampling rate of 128Hz and ocular/electromyographic artifacts 
already removed. Other preprocessing steps included band-pass 
filtering in 4-45Hz and re-referencing in common average 
mode. Preprocessing also included EEG baseline correction 
using 3 sec of free running EEG recorded before video start. 
All further analysis was carried out in Matlab environment 
under academic license. 

B. Channel selection and time window
Analysis for emotions with EEG requires the 

identification of a small subset of electrodes to target relevant 
features for classification. Previous studies on “affective EEG” 
[6, 7, 8, 9] report that frontal and parietal lobes are the most 
informative ones about the emotional states, while the alpha, 
gamma and beta waves appear to be the most discriminative. 
Table I was compiled comparing different papers in the attempt 
to find the mostly used electrodes for emotion detection. We 
did not use a subject-dependent channel selection in order to 
maintain a completely user-independent model. 

Each signal from the reported channels in Table I was 
analyzed in the time window between 49- and 59-seconds
during video screening (equivalent to an analysis window of 
10s). We decided for this approach because during musical 
videos viewers emotions fluctuate but they could define an 
objective positive or negative emotional judgement connected 
with that video at the end of it. In the last ten seconds of each 
recording, the feelings that the musical video inspired in the 
audience are conscious and truly aware. This method is in 
accordance with the “peak-end rule” [10], a psychological 
theory stating that people don’t judge an emotional experience 
on the total sum or average of every moment of the experience 
but only during the most intense point and at its end. In this 
way, we tried to capture the relation between the subjective 
valence/arousal score and the EEG recorded closer to that 
moment. The window length also takes in account observations 
from [11]: on the DEAP dataset, the authors found that the 
optimal arousal window is between 3 and 12 seconds.
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TABLE I. ELECTRODES SELECTION

Selected channels in each frequency band
Frequency band EEG channels

Theta (4-7Hz) 'F7','F8','FC2','Fp1','Fp2','Fz','O1','P3',
'P7','P8','T7','T8'

Alpha (8-13Hz) 'F8','Fp1','Fp2','Fz','O2','P4','P7','PO3',
'T7','T8'

Beta (14-30Hz) 'CP5','F8','FC5','Fp1','Fp2','Oz','P8','T7',
'T8'

Gamma (31-45Hz) 'AF4','CP5','F8','FC5','Fp1','Fp2','P8',
'PO4','T7','T8'

C. Feature extraction: frequency domain
In frequency domain, EEG researchers usually subdivide 

the frequency spectrum in bands called theta (4-7Hz), alpha (8-
13Hz), beta (14-30Hz) and gamma (31-45Hz). For each 
electrode in each frequency band (Table I), we extracted the 
signal power as the area under the power spectral density curve 
of every second, averaged and normalized the results dividing 
by the total power in 4-45Hz. 

D. Feature extraction: time domain
In time domain we normalized EEG signals in amplitude 

with z-scores and calculated kernel density in one dimension 
using a Gaussian kernel with optimized bandwidth and the 
cumulative density function. From the cumulative density 
function, values at 25%, 50% and 75% percentile were taken. 
From the kernel density, mean and standard deviation (sigma) 
were collected. Other time domain parameters included 
skewness, kurtosis, mean envelope and standard deviation of 
signals amplitude. 

E. Feature extraction: complexity measures
In EEG analysis Fractal Dimension (i.e. FD) is applied to 

determine the chaotic dynamics of the brain [12]. While 
Higuchi FD algorithm works iteratively over the time, Katz 
method calculates the sum of the Euclidean distances between 
successive points in the temporal series, divided by the 
maximum distance from each point and the initial point. 
Another complexity measure is the Hurst exponent, which is 
estimated by breaking the time series into chunks and a 
rescaled range is calculated on each chunk before averaging 
over all chunks. Hjorth mobility and complexity are two 
normalized slope descriptors (NSDs) used since the seventies 
in EEG analysis [13]. Mobility is the square root of variance of 
the first derivative of the signal divided by variance of the 
signal. Complexity compares the signal's similarity to a pure 
sine wave, where the value converges to 1 if the signal is more 
similar.

In total, we extracted 4 features in frequency domain, 9 
features in time domain and 5 complexity features. In 
frequency domain, we obtained the relative power for each 
frequency band averaging the power spectral density over 
channels of Table I. For the time domain and complexity, we 
averaged data of the four different electrode subsets proposed 
in Table I, gathering all the results in two matrices of 36 and 20
features respectively. In each matrix we ranked all features 
independently using the absolute value two-sample t-test (e.g. 
|t|) with pooled variance estimate, using the cut-off value of 
1.96 for feature exclusion. In this way, we avoided to explicit 
pre-select features, automatically choosing inputs among those 

with higher rank. The final feature matrix comprehended 16 
features.

F. Creation of labels from subjective data
All subjects rated the musical videos in terms of valence, 

arousal. Valence and arousal scores were assigned directly 
after each trial on continuous scales with values between 1 and 
9 (1 meaning “negative” valence/unpleasantness or calm/bored 
for arousal and 9 meaning “positive” valence/pleasantness or 
excited/engaged for arousal). We scaled data by standard 
deviation to bring the subjective ratings to a comparable 
metric. This transformation scales absolute values to relative 
scores that reflect each answer's rank in comparison to the 
ranks of all responses in that sample. Figure 1 reports the 
standardized ratings in terms of arousal and valence for each 
musical video.

Fig. 2. Unsupervised clustering of video ratings

To subdivide the dataset in groups and to assign a label for 
each video, we used k-mean as unsupervised method to 
determine the classes. We decided for a division in two classes 
because the data appears to be naturally grouped in two 
clusters (Fig. 1). Five attempts have been made with k-

Fig.1. Standardized scores of arousal and valence for each musical video. Red 
dashed lines are mean values of Valence and Arousal
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means++ algorithm and different distance initialization. The 
best sum of distances between points and centroids was 
selected (Fig.2). Except video number 32, all other videos 
appear to be part of a “High Arousal-High Valence” (label “2”) 
or a “Low Arousal-Low Valence” (label “1”) group. Another 
reason we preferred binary classification was the reduction of 
additional class imbalance problems.

III. RESULTS

The dataset comprises 32 subjects and 40 videos. 
Consequently, the feature matrix size resulted in 1280 samples 
by 16 columns. All values in each column were normalized in 
range from zero to one.

A common problem to be addressed in machine learning is 
class imbalance, i.e.: when the total number of one class is far 
less than the number of samples of the other. The major part of 
machine learning algorithms perform better when classes are 
nearly equal. Common solutions for class imbalance are 
through sampling or applying a cost function. Cost function 
approaches introduce a penalization parameter for instances of 
the bigger class. Sampling based methods delete instances from 
the over-represented class or add copies of instances to the 
under-represented class. In the present study, class “1” had 864 
instances and class”2” 416. We solved the class imbalance 
problem using under-sampling: 416 randomly selected samples 
from Class 1 were collected and used to build a new dataset 
together with all instances of Class 2. 

A. Dimensionality reduction
Before classification, the feature matrix was inspected with 

a dimensionality reduction technique to eliminate redundant 
information. Initially, we investigated dimensionality with 
principal component analysis (i.e. PCA).  PCA eigenvalues 
estimated that 6 dimensions could summarize adequately the 
actual feature matrix (the percentage of the total variance 
explained by 6 principal components was 91.8289%). 
However, discriminative information in the data might not be 
necessarily captured by components with largest variance. We 
preferred to detect the intrinsic dimensionality (i.e. ID) of the 
dataset that could be estimated using geometric methods like 
maximum likelihood estimation between neighboring points as 
reported in [14]. An issue with this kind of ID estimator based 
in maximum likelihood is that it can underestimate the correct 
ID in certain situations. In fact, for our dataset, the estimated 
ID was zero. To overcome this problem, we selected a more 
robust algorithm as proposed in [15] that computes the ID 
considering both the normalized nearest neighbor distances and 
the angles computed on couples of neighboring points. With 
this method, the estimated ID was 1. We also tested our feature 
matrix with an improved algorithm for maximum likelihood 
estimation [16] and it returned 1 ID for our dataset. Given one 
as target dimension of our dataset, we applied different 
dimensionality reduction techniques and selected the outputs 
helpful for class separability. Twelve dimensionality reduction 
techniques were tested with one as target dimension: linear
discriminant analysis, generalized discriminant analysis, 
stochastic neighbor embedding, stochastic proximity 
embedding, deep autoencoders (using denoising autoencoder 
pretraining), t-distributed stochastic neighbor embedding, 
laplacian eigenmaps, neighborhood preserving embedding, 

classical multidimensional scaling, neighborhood components 
analysis,  linearity preserving projection, landmark isomap and 
diffusion maps. These algorithms have been coded following 
the instructions found in [17]. We run a two-sample t-test with 
pooled variance estimate at significance level of 0.05 to 
determine the dimensionality reduction methods able to
enhance classification. Statistical test returned a significant 
absolute value (|t|>1.96) for 1D vectors obtained by generalized 
discriminant analysis (gaussian kernel), linear discriminant 
analysis and neighborhood components analysis. Normality of 
data distribution for all vectors was ensured by Jarque-Bera test 
as prerequisite for running t-tests.  The new feature space 
comprising vectors from dimensionality reduction has 832 
samples and 3 columns. 

B. Classification
The three-dimensional feature space was the input to cross-
validate different models: growing a single classification tree, 
an ensemble of 100 classification trees using bootstrap 
aggregating, support vector machine with linear kernel, k-
nearest neighbor classifier. All these classifiers had their 
hyperparameters tuned with iterative search. Cross-validation 
was computed in 10 K-fold fashion with data partition in 90% 
for training and 10% for validation (Table II). We also 
included a feedforward neural network based with Bayesian 
regularization (two layers of 10 and 5 neurons, max learning 
epochs 5000, learning rate 0.01) and an ensemble of 100 
neural networks with the same characteristics. The average 
accuracy of each run of cross-validation is displayed in Table 
III.

TABLE II. CROSS VALIDATION RESULTS

Results of each run of 10-Fold Cross Validation (accuracy mean±std %)

Classifier 1st run 2nd run 3rd run 4th run 5th run

Classification tree 61.30±5.28 62.03±6.30 62.28±7.58 62.99±3.63 61.54±4.44

Ensemble of trees 58.52±8.40 60.34±4.11 60.09±6.73 57.33±5.69 60.69±4.15

Support vector 
machines

64.55±4.19 64.04±3.45 64.32±4.62 64.67±3.38 63.48±5.43

k-Nearest Neighbor 64.17±6.52 64.30±4.65 64.06±6.18 64.18±5.24 64.30±3.33

Feedforward NN 55.48±0.83 71.31±1.73 69.52±0.61 54.17±1.16 68.69±1.13

Ensemble 100 
Feedforward NN

63.12±2.19 67.08±2.69 68.51±2.06 64.64±1.41 63.50±1.51

TABLE III. PROPOSED MODELS COMPARISON

10-Fold Cross Validation results (average of 5 runs)

Classifier CV 
Accuracy

Standard 
deviation

Classification tree 62.08% ±0.67%

Ensemble of trees 59.39% ±1.42%

Support vector machines 64.21% ±0.47%

k-Nearest Neighbor 64.20% ±0.10%

Feedforward NN 63.91% ±8.38%

Ensemble 100 Feedforward NN 65.37% ±2.33%
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Feedforward neural network despite an acceptable accuracy 
has higher variability compared to the other machine learning 
methods. For example, if we only cross-validated one time the 
feedforward NN, we could find an accuracy of 71.31±1.73% 
(2nd CV run) but this value doesn’t appear to be realistic. In 
order to report a fair comparison between methodologies and to 
avoid overfitting we preferred judging each classifier by the 
mean cross validation accuracy of all five runs. Performance is 
higher in case of an ensemble of neural networks: cross-
validation accuracy is around 65.37% considering all five runs. 
Methods with stable outcomes across cross-validation runs are 
support vector machines and k-nearest neighbor.

C. Comparison with previous works
We compared our outcomes to previous works on emotion 

recognition. We selected those that apply a user-independent 
approach with similar stimuli (musical videos): heterogeneity 
of stimuli applied in different articles reduces the number of 
possible comparisons. Another difference between some papers 
found in the literature and the present study is the lack of 
standardization in subjective scores of valence and arousal. A 
further difference between articles is the method used to 
represent emotions. There are two mainstream viewpoints to 
differentiate between emotions: “categorical” or “dimensional” 
perspectives of emotions. Categorical representation of 
emotions divides feelings in six basic emotions: anger, disgust, 
fear, happiness, sadness, and surprise. Dimensional models of 
emotions use three dimensions: valence, arousal, and 
dominance. In the present paper we applied the model called 
“Circumplex Model of Affect”, which only uses valence and 
arousal. For this reason, we looked for papers applying the 
same perspective as we did in the DEAP dataset.

In [18] authors analyze emotions elicited by presentation of 
DEAP dataset. They achieved the average accuracies of 
57.6% and 62% for two classes of valence (high/low) and 
arousal (high/low).

Authors of [18] used DEAP dataset in their study without 
standardization of valence and arousal subjective scores. 
They used a separate two-class classification for valence 
(high/low) and arousal (high/low): in valence they 
achieved 61.17% ± 4.18% while on arousal detection they 
reported 64.84% ± 9.56%. Their results are obtained with 
a single cross-validation run with 80% and 20% data 
division.

In [19] the proposed methodology of emotion classification
uses a mixed model of arousal and valence dividing the 
valence-arousal plane in quadrants. The authors selected 
DEAP videos corresponding to the high valence-high 
arousal (i.e. HVHA) and those of the low valence-low 
arousal (i.e. LALV) quadrants (two classes in total). They 
trained a Multilayer Perceptron with one hidden layer on 
30 subjects and tested the model on the remaining two.
Test set accuracy resulted is 58.5%.

Authors of [20] applied a Deep Belief Network to distinct 
arousal (high/low) and valence (high/low) scores of the 
DEAP dataset. They trained the model on 31 participants 
and tested on the last one in a “leave-one-out” fashion.
This methodology suffers of large discrepancy in the 

classification outcomes as shown by the standard deviation 
of the test set accuracy (69.84±11.69% for arousal and 
66.88±11.22% for valence). In the same paper, the authors 
also examined the DEAP data with a SVM classifier 
including a radial basis function as kernel and pre-
selecting significant features with Analysis of Variance.
They reached test set accuracy of 56.72±13.45% on
arousal and 55.08±13.19% on valence.

IV. CONCLUSIONS

In the present paper, we report an user-independent method 
applied on the DEAP dataset that uses standardized subjective 
emotional scores to create a series of labels summing up 
arousal and valence elicited by musical videos. We extracted 
16 features from EEG (time domain, frequency domain and 
complexity measures) and we reduced the dimensionality of 
the input dataset to avoid redundant data using an intrinsic 
dimensionality search. Our results on mixed arousal-valence 
classification are compatible with those on distinct arousal or 
valence classification found in previous literature. 
Comparisons with previous literature were limited to the works 
that used the same dataset. In our results we report different 
cross-validation runs: an ensemble of 100 NN reached the peak 
accuracy but SVM and k-NN showed more stable predictive 
ability over time.
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