Journal article Open Access

Automated bank cheque verification using image processing and deep learning methods

Prateek Agrawal; Radu Prodan


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-06</subfield>
  </datafield>
  <controlfield tag="005">20201104122658.0</controlfield>
  <controlfield tag="001">4226158</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4226158</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Automated bank cheque verification using image processing is an attempt to complement the present cheque truncation system, as well as to provide an alternate methodology for the processing of bank cheques with minimal human intervention. When it comes to the clearance of the bank cheques and monetary transactions, this should not only be reliable and robust but also save time which is one of the major factor for the countries having large population. In order to perform the task of cheque verification, we developed a tool which acquires the cheque leaflet key components, essential for the task of cheque clearance using image processing and deep learning methods. These components include the bank branch code, cheque number, legal as well as courtesy amount, account number, and signature patterns. our innovation aims at benefiting the banking system by re-innovating the other competent cheque-based monetary transaction system which requires automated system intervention. For this research, we used institute of development and research in banking technology (IDRBT) cheque dataset and deep learning based convolutional neural networks (CNN) which gave us an accuracy of 99.14% for handwritten numeric character recognition. It resulted in improved accuracy and precise assessment of the handwritten components of bank cheque. For machine printed script, we used MATLAB in-built OCR method and the accuracy achieved is satisfactory (97.7%) also for verification of Signature we have used Scale Invariant Feature Transform (SIFT) for extraction of features and Support Vector Machine (SVM) as classifier, the accuracy achieved for signature verification is 98.10%.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Klagenfurt University</subfield>
    <subfield code="a">Radu Prodan</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">14589375</subfield>
    <subfield code="z">md5:ff769480ad3600775d3ce97504af14fb</subfield>
    <subfield code="u">https://zenodo.org/record/4226158/files/MTAP__Bank_Cheque_Verification_Using_Image_Processing (3).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Klagenfurt University</subfield>
    <subfield code="a">Prateek Agrawal</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s11042-020-09818-1</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Automated bank cheque verification using image processing and deep learning methods</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825134</subfield>
    <subfield code="a">smART socIal media eCOsytstem in a blockchaiN Federated environment</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
193
933
views
downloads
Views 193
Downloads 933
Data volume 13.6 GB
Unique views 187
Unique downloads 851

Share

Cite as