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Abstract. One second of memory maintenance was evaluated to deter-
mine EEG metrics ability to track memory load and its variations con-
nected with the lateral presentation of objects in the visual hemi-field.
An initial approach focused on features gathered from the N2pc time
series to detect the memory load using ensemble learners.Conversely, the
secondary approach employed a regularised support vector classifier to
predict the area of N2pc event-related components, identifying 6 levels
of memory load and stimulus location.
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1 Introduction

1.1 Visual working memory and cognitive load

Visual working memory (i.e. VWM) supports high cognitive functions provid-
ing temporary storage for retained information from one fixation to the next.
The visual features primarily maintained in mind are position, shape, color and
texture of the objects in space commonly referred an object’s attributes above
the perceptive threshold [1]. The number of items stored in memory is rather
related to the concept of capacity [2] and limited to 3-4 multi-attribute ob-
jects [3] depending on subjective performance and task characteristics (for ex-
ample, encoding time [4]). Multitasking impacts the number of memory items
that can be maintained and the amount of cognitive resources expended [5]. In-
deed, working memory not only includes maintenance of information, but also
information processing during encoding time of filtering irrelevant stimuli (dis-
tractor avoidance) [6]. Such multiprocessing is commonly termed the cognitive
load. The time-based resource-sharing model [7] aims to theorize the relation-
ship between cognitive load and memory performance by identifying four major
mental stages: encoding, filtering distractors, recall, and refreshing-the last of
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which redirects attention to restore dwindled items into memory. While learning
during a classroom lesson, students need to manage mental resources in order to
continuously acquire incoming information and effectively manipulate it. When
information to be held oversteps working memory capacity, cognitive overload
is experienced [8]. Naturally, what happens during the classroom experience
could be extended to other real-world scenarios. In multimedia, visual and au-
dio streams are processed in humans by two separate brain circuitry both with
limited working memory capacity, thus active processing of both streams could
exceed the audience’s available cognitive capacity. This is not only due to the es-
sential processing of audio or video materials, but also caused by environmental
disturbances or confusion in the presentation of multimedial contents [9].

1.2 Neurophysiologic correlates of VWM

In literature three components are commonly attributed to VWM. Two of them
are event-related potentials (i.e. ERP), one called controlateral delayed activity
(i.e. CDA) and the other N2pc. The third correlate of VWM is an induced
modification over occipito-parietal electrodes in alpha band, where one observes
a decreased alpha power when an individual retains information in memory.

Lateralization of stimuli in the visual hemifield During VWM experi-
mental evaluation, an event related potential called controlateral delayed activ-
ity (i.e. CDA) [10] was identified on posterior-occipital areas usually interpreted
as a neural marker of the number of items stored in memory. Moreover, CDA
polarity changes depending on the position of the elements memorized in the
visual space. Despite an alternative hypothesis claiming a relationship between
the CDA wave and spatial attention [11], current findings confirm the relation
between CDA and memory capacity [12], [13]. In subjects with lower memory ca-
pacity, distractors presented alongside targets in the visual field increased CDA
amplitudes compared to individuals with better capacity [14].

Deployment of visual attention ERPs can track shifts of attention to the tar-
gets: the N2pc wave specifically reflects the attention towards an object [15], [16].
This wave appears between 180 and 300ms (usually peaking at a latency of
250ms) with enhanced amplitude over the posterior-occipital electrodes contro-
lateral to the visual targets present in the visual field. In [17], the authors describe
a relationship between N2pc and the processing load: visuo-spatial configurations
that require more time to be evaluated demand a sustained involvement of atten-
tion reflected by higher N2pc amplitudes. N2pc appears not only as a metric of
attention for targets in the extra-personal space, but mreover N2pc amplitudes
are modulated during memory retention to weigh information according to its
relevance [18].

Relation between alpha oscillations and memory functions Alpha oscil-
latory activity is suppressed during memory encoding likely due to visual pro-
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cessing, whilst alpha is enhanced in the course of memory maintenance to prevent
competition for resource allocation with incoming visual stimuli [19]. Through-
out memory retention alpha waves could phase-couple with other frequencies like
beta or gamma in organized neural networks [21]. Patterns of alpha desynchro-
nization during encoding and synchronization for memory maintenance appear
in form of induced power changes that are not time-locked to stimuli.

2 Methods

Experimental paradigm Data was released by authors of the paper [22] in
pre-processed format. The present study solely retained the healthy subjects,
originally denoted as the comparison group. Participants were 27 college students
(11 females) with an average age of 22 years. The experimental paradigm was
adapted from [23] with an initial presentation of an array of geometrical shapes
succeeded by a memory maintenance period of one second. Prior to each trial,
an arrow appearing at the center of the screen informed the subjects which
visual hemi-field they should memorize (left ”L” or right ”R”), while during
each trial an array of colored shapes was displayed for 200ms. Subsequently, the
object array disappeared, requiring the subjects to store the visual information
into their working memory. Following a memory retention period of one second,
participants would then be tasked with deciding whether the new object array
matched the one presented prior. Half of the trials had one color of a shape
changed in the attended side. Three types of object arrays were tested: ”low
memory load” (i.e. ”L”) with only 2 squares to be memorised, ”high memory
load” (i.e. ”H”) when 4 squares were to be memorised or ”distractors” (i.e. ”D”)
with two circles that should be ignored (Fig. 1).

Fig. 1. Experimental stimuli were 2 types of objects (squares and circles) in 10 ran-
domly selected colors (supra-threshold perceptive features) [22]

Pre-processing of neural signals EEG was recorded with a high-density cap of
128 electrodes (Hydrocel Geodesic sensor net) and sampled at 500 Hz. Epochs
were 104 for each experimental condition, and those with artifacts were rejected.
Further pre-processing steps included filtering (0.05–30 Hz) and re-referencing
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in common average mode. Epoch length of the memory retention period was 1
second preceded by 0.4s of baseline. For each subject, extra-cephalic electrodes
(lower line of the Geodesic cap) were discarded (109 channels kept), and single
trial EEG signals had their voltages normalized with z-score procedure (using
baseline mean and standard deviation in range -200 to 0ms): z-score standard-
ization on subjective baseline allows one to model a user-independent approach.
Procedures involved employed the MNE-python library [25].

Outliers detection Outlier detection is an important preliminary step to iden-
tify subjects that the model is unable to generalise, deviating significantly from
the rest of the data. Multidimensional scaling reduces dimension of the data
by representing the proximity (or similarity) matrix between individuals as a
lower dimensional space [24]. The proximity matrix is a configuration of points
in Euclidean space such that the inter-point distances approximate the subjec-
tive data. In (Fig. 2) dashed lines represent the squared Mahalanobis distances

Fig. 2. All subjects in all conditions Fig. 3. Outliers critical threshold

of the empirical covariance matrix shown as a visual indicator of adjacency be-
tween points. The inclusion criteria implemented a mathematical approach to
cut-off outliers by identifying a critical threshold based on the approximated F
distribution [26] (Fig. 3). Based on the critical threshold, subjects 4 and 16 were
excluded from further analysis.

3 Results

Initially, a total of 5956 signals were further normalized with L2-norm and pair-
wise comparisons between conditions obtained with t-test analysis for each chan-
nel with significance threshold adjusted by Bonferroni correction. This statistical
test was applied to identify a group of electrodes with significant changes between
conditions. Indeed in Fig. 4, one observes a high number of differing pair-wise
comparisons between 192 and 268 ms. Additionally, an analysis using cluster
permutation F-test was conducted in the same data to highlight time frames of
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relevant activity differing between stimuli, as in [27]. For example, electrode E90
in Fig. 5 illustrates the cluster of significant activity corresponding to N2pc time
range (highlighted in orange, p <0.05). Crossing the results of both statistical

Fig. 4. T-test on all sensor data Fig. 5. Permutation test on each sensor

methodologies we obtained a group of electrodes and a time-frame with brain
activity relevant to distingush between conditions: mainly posterior-occipital
channels during N2pc time course (Fig. 6).

Fig. 6. Topographic plots at 240ms (color scale blue to red from -2.65 to 3.56 µV)

3.1 Cognitive load prediction

Analysis focused on prediction of three cognitive states using the time series
extracted from the N2pc wave on parieto-occipital electrodes.Number of trials
were equalized randomly under-sampling the most represented classes. From the
time course of the N2pc, 794 features were extracted using 63 characterization
methods [28]. Redundant features were eliminated by the statistical approach
presented in [29], and divided in train and test sets with a 80% and 20% split.
Test set accuracy is reported in Table 1 comparing two classification methods
each with hyperparameters tuned by a combination of cross-validated (5 folds
with stratification) randomized and grid search on train set.The chance level
was calculated as 51.96% according to the binomial cumulative distribution as
in [30] with a significance threshold set at p=0.05.
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Ensemble method Distr vs High Distr vs Low High vs Low

Random Forest 72% 73% 69%
Gradient Boosting 72% 71% 71%

Table 1. Cognitive load prediction one-vs-one

3.2 Prediction of Cognitive load and stimuli location

In this investigation six classes were inspected: three cognitive load levels (”L”,
”H”, ”D”) by two different locations of the stimuli in the visual hemi-field (”L”
or ”R”). In Fig. 7, the global field power (i.e. GFP) from all electrodes is used
to identify a time window enclosing the N2pc wave. Indeed, permutation t-test
with pair-wise comparisons ( significance adjusted by the ”false discovery rate”)
between conditions identified two clusters of significant electrodes, one over the
parieto-occipital, and one over the fronto-central areas (Fig. 8). Area of the N2pc

Fig. 7. GFP of the experimental conditions Fig. 8. 38 identified electrodes

from each single trial over the identified electrodes was used as feature for an
SVM classifier. Classes were balanced by randomly under-sampling trials of the
most represented labels (5346 trials used as observations). A support vector ma-
chines (i.e. svm) model with radial basis function (i.e. rbf) as kernel was selected
as classifier and data was divided in the aforementioned 80-20 split. Kernel and
regularization parameters were optimized by grid search with cross-validation
(5 stratified folds and validation size 20%) and classification methodology one-
versus-rest. Outcomes against a dummy svm-rbf classifier are shown in Table 2
using F1 score as metric (last two columns are weighted-average F1 and micro-
F1 scores). Statistical chance level calculated as in [30] was 17.5% (at p=0.05).

4 Conclusions

Two procedures are presented to distinguish between the levels of cognitive re-
sources deployed during retention period of the visual working memory: the first
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DL HL LL DR HR LR w-F1 Micro

SVM 0.657 0.642 0.538 0.603 0.325 0.570 0.552 0.560

Dummy 0.126 0.150 0.168 0.163 0.158 0.152 0.153 0.153
Table 2. Prediction of cognitive load and stimulus location

based on features extracted from the N2pc time series whereas the second in-
volves using the area of N2pc component. The latter offers a promising technique
for categorizing not only the memory load, but also the location of the stimuli
in the visual hemi-field (overall accuracy +38.5% above chance level).
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