Conference paper Open Access

Aplib: An Agent Programming Library for Testing Games

Prasetya, Wishnu; Dastani, Mehdi


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/02f503c1-817a-4868-8e99-080780da9f5f/aplib_AAMAS_2020_paper.pdf"
      }, 
      "checksum": "md5:74ac795e72072d8e0a4605ca91aaafdb", 
      "bucket": "02f503c1-817a-4868-8e99-080780da9f5f", 
      "key": "aplib_AAMAS_2020_paper.pdf", 
      "type": "pdf", 
      "size": 2813265
    }
  ], 
  "owners": [
    93788
  ], 
  "doi": "10.5281/zenodo.4194485", 
  "stats": {
    "version_unique_downloads": 33.0, 
    "unique_views": 70.0, 
    "views": 81.0, 
    "version_views": 81.0, 
    "unique_downloads": 33.0, 
    "version_unique_views": 70.0, 
    "volume": 98464275.0, 
    "version_downloads": 35.0, 
    "downloads": 35.0, 
    "version_volume": 98464275.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4194485", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4194484", 
    "bucket": "https://zenodo.org/api/files/02f503c1-817a-4868-8e99-080780da9f5f", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4194484.svg", 
    "html": "https://zenodo.org/record/4194485", 
    "latest_html": "https://zenodo.org/record/4194485", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4194485.svg", 
    "latest": "https://zenodo.org/api/records/4194485"
  }, 
  "conceptdoi": "10.5281/zenodo.4194484", 
  "created": "2020-11-02T14:55:48.635783+00:00", 
  "updated": "2020-11-04T12:26:54.865049+00:00", 
  "conceptrecid": "4194484", 
  "revision": 3, 
  "id": 4194485, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4194485", 
    "description": "<p>Testing modern computer games is notoriously hard. Highly dynamic behavior, inherent non-determinism, and fine grained inter&nbsp;activity blow up their state space; too large for traditional auto- mated testing techniques. An agent-based testing approach offers an alternative as agents&rsquo; goal driven planning, adaptivity, and reasoning ability can provide an extra edge. This paper provides a summary of aplib, a Java library for programming intelligent test agents, featuring tactical programming as an abstract way to exert control on agents&rsquo; underlying reasoning based behavior. Aplib is implemented in such a way to provide the fluency of a Domain Specific Language (DSL) while still staying in Java, and hence aplib programmers will keep all the advantages that Java programmers get: rich language features and a whole array of development tools.</p>", 
    "language": "eng", 
    "title": "Aplib: An Agent Programming Library for Testing Games", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4194484"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4194485"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "iv4xr-project"
      }
    ], 
    "keywords": [
      "automated game testing", 
      "AI for automated testing", 
      "intelligent agents for testing", 
      "agents tactical programming"
    ], 
    "publication_date": "2020-11-02", 
    "creators": [
      {
        "orcid": "0000-0002-3421-4635", 
        "affiliation": "Utrecht University", 
        "name": "Prasetya, Wishnu"
      }, 
      {
        "affiliation": "Utrecht University", 
        "name": "Dastani, Mehdi"
      }
    ], 
    "meeting": {
      "acronym": "AAMAS", 
      "dates": "9-13 May, 2020", 
      "place": "Auckland, New Zealand", 
      "title": "International Conference on Autonomous Agents and Multiagent Systems"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4194484", 
        "relation": "isVersionOf"
      }
    ]
  }
}
81
35
views
downloads
All versions This version
Views 8181
Downloads 3535
Data volume 98.5 MB98.5 MB
Unique views 7070
Unique downloads 3333

Share

Cite as