Conference paper Open Access
Prasetya, Wishnu;
Dastani, Mehdi
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/02f503c1-817a-4868-8e99-080780da9f5f/aplib_AAMAS_2020_paper.pdf" }, "checksum": "md5:74ac795e72072d8e0a4605ca91aaafdb", "bucket": "02f503c1-817a-4868-8e99-080780da9f5f", "key": "aplib_AAMAS_2020_paper.pdf", "type": "pdf", "size": 2813265 } ], "owners": [ 93788 ], "doi": "10.5281/zenodo.4194485", "stats": { "version_unique_downloads": 33.0, "unique_views": 70.0, "views": 81.0, "version_views": 81.0, "unique_downloads": 33.0, "version_unique_views": 70.0, "volume": 98464275.0, "version_downloads": 35.0, "downloads": 35.0, "version_volume": 98464275.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4194485", "conceptdoi": "https://doi.org/10.5281/zenodo.4194484", "bucket": "https://zenodo.org/api/files/02f503c1-817a-4868-8e99-080780da9f5f", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4194484.svg", "html": "https://zenodo.org/record/4194485", "latest_html": "https://zenodo.org/record/4194485", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4194485.svg", "latest": "https://zenodo.org/api/records/4194485" }, "conceptdoi": "10.5281/zenodo.4194484", "created": "2020-11-02T14:55:48.635783+00:00", "updated": "2020-11-04T12:26:54.865049+00:00", "conceptrecid": "4194484", "revision": 3, "id": 4194485, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4194485", "description": "<p>Testing modern computer games is notoriously hard. Highly dynamic behavior, inherent non-determinism, and fine grained inter activity blow up their state space; too large for traditional auto- mated testing techniques. An agent-based testing approach offers an alternative as agents’ goal driven planning, adaptivity, and reasoning ability can provide an extra edge. This paper provides a summary of aplib, a Java library for programming intelligent test agents, featuring tactical programming as an abstract way to exert control on agents’ underlying reasoning based behavior. Aplib is implemented in such a way to provide the fluency of a Domain Specific Language (DSL) while still staying in Java, and hence aplib programmers will keep all the advantages that Java programmers get: rich language features and a whole array of development tools.</p>", "language": "eng", "title": "Aplib: An Agent Programming Library for Testing Games", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4194484" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "4194485" } } ] }, "communities": [ { "id": "iv4xr-project" } ], "keywords": [ "automated game testing", "AI for automated testing", "intelligent agents for testing", "agents tactical programming" ], "publication_date": "2020-11-02", "creators": [ { "orcid": "0000-0002-3421-4635", "affiliation": "Utrecht University", "name": "Prasetya, Wishnu" }, { "affiliation": "Utrecht University", "name": "Dastani, Mehdi" } ], "meeting": { "acronym": "AAMAS", "dates": "9-13 May, 2020", "place": "Auckland, New Zealand", "title": "International Conference on Autonomous Agents and Multiagent Systems" }, "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.4194484", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 81 | 81 |
Downloads | 35 | 35 |
Data volume | 98.5 MB | 98.5 MB |
Unique views | 70 | 70 |
Unique downloads | 33 | 33 |