Dataset Open Access

Data for "Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics"

Oesterle, Jonathan; Behrens, Christian; Schröder, Cornelius; Herrmann, Thoralf; Euler, Thomas; Franke, Katrin; Smith, Robert G; Zeck, Günther; Berens, Philipp


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/9512c242-74c1-4ba7-915f-8a16837ff025/oesterle_el_al_data.zip"
      }, 
      "checksum": "md5:41d116be6781d2dab5ec0a769209743e", 
      "bucket": "9512c242-74c1-4ba7-915f-8a16837ff025", 
      "key": "oesterle_el_al_data.zip", 
      "type": "zip", 
      "size": 13620241949
    }
  ], 
  "owners": [
    151269
  ], 
  "doi": "10.5281/zenodo.4185955", 
  "stats": {
    "version_unique_downloads": 15.0, 
    "unique_views": 96.0, 
    "views": 106.0, 
    "version_views": 106.0, 
    "unique_downloads": 15.0, 
    "version_unique_views": 96.0, 
    "volume": 231544113133.0, 
    "version_downloads": 17.0, 
    "downloads": 17.0, 
    "version_volume": 231544113133.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4185955", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4185954", 
    "bucket": "https://zenodo.org/api/files/9512c242-74c1-4ba7-915f-8a16837ff025", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4185954.svg", 
    "html": "https://zenodo.org/record/4185955", 
    "latest_html": "https://zenodo.org/record/4185955", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4185955.svg", 
    "latest": "https://zenodo.org/api/records/4185955"
  }, 
  "conceptdoi": "10.5281/zenodo.4185954", 
  "created": "2020-11-05T10:13:49.440921+00:00", 
  "updated": "2020-11-06T00:27:03.249002+00:00", 
  "conceptrecid": "4185954", 
  "revision": 2, 
  "id": 4185955, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4185955", 
    "description": "<p>Experimental and precomputed data for the paper &quot;Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics&quot;&nbsp;by Oesterle et al. 2020 (DOI:&nbsp;<a href=\"https://doi.org/10.7554/eLife.54997\">10.7554/eLife.54997</a>).</p>\n\n<p>The cone bipolar cell data has been described and&nbsp;published in the paper &quot;Inhibition decorrelates visual feature representations in the inner retina&quot; by&nbsp;Franke et al. 2017 (DOI:&nbsp;<a href=\"https://doi.org/10.1038/nature21394\">10.1038/nature21394</a>).&nbsp;</p>\n\n<p>This data is both a supplement to the Oesterle et al. paper and the code for this paper.</p>\n\n<p>The code&nbsp;is available in this&nbsp;<a href=\"http://github.com/berenslab/CBC_inference\">GitHub repository</a>.</p>\n\n<p>We recommend&nbsp;downloading the GitHub repository&nbsp;and to follow the instructions there.</p>", 
    "language": "eng", 
    "title": "Data for \"Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics\"", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4185954"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4185955"
          }
        }
      ]
    }, 
    "version": "Version 1.0", 
    "references": [
      "Oesterle et al. (2020), Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics, (DOI:\u00a010.7554/eLife.54997)", 
      "Franke et al. (2017), Inhibition decorrelates visual feature representations in the inner retina, (DOI: 10.1038/nature21394)"
    ], 
    "publication_date": "2020-11-02", 
    "creators": [
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Oesterle, Jonathan"
      }, 
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Behrens, Christian"
      }, 
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Schr\u00f6der, Cornelius"
      }, 
      {
        "affiliation": "Naturwissenschaftliches und Medizinisches Institut an der Universit\u00e4t T\u00fcbingen, Reutlingen, Germany", 
        "name": "Herrmann, Thoralf"
      }, 
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Euler, Thomas"
      }, 
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Franke, Katrin"
      }, 
      {
        "affiliation": "Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA", 
        "name": "Smith, Robert G"
      }, 
      {
        "affiliation": "Naturwissenschaftliches und Medizinisches Institut an der Universit\u00e4t T\u00fcbingen, Reutlingen, Germany", 
        "name": "Zeck, G\u00fcnther"
      }, 
      {
        "affiliation": "Institute for Ophthalmic Research, University of T\u00fcbingen, T\u00fcbingen, Germany", 
        "name": "Berens, Philipp"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.7554/eLife.54997", 
        "relation": "isSupplementTo", 
        "resource_type": "publication-article"
      }, 
      {
        "scheme": "url", 
        "identifier": "https://github.com/berenslab/CBC_inference", 
        "relation": "isSupplementTo", 
        "resource_type": "software"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4185954", 
        "relation": "isVersionOf"
      }
    ]
  }
}
106
17
views
downloads
All versions This version
Views 106106
Downloads 1717
Data volume 231.5 GB231.5 GB
Unique views 9696
Unique downloads 1515

Share

Cite as