Dataset Open Access

Data for "Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics"

Oesterle, Jonathan; Behrens, Christian; Schröder, Cornelius; Herrmann, Thoralf; Euler, Thomas; Franke, Katrin; Smith, Robert G; Zeck, Günther; Berens, Philipp


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.4185955", 
  "language": "eng", 
  "title": "Data for \"Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics\"", 
  "issued": {
    "date-parts": [
      [
        2020, 
        11, 
        2
      ]
    ]
  }, 
  "abstract": "<p>Experimental and precomputed data for the paper &quot;Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics&quot;&nbsp;by Oesterle et al. 2020 (DOI:&nbsp;<a href=\"https://doi.org/10.7554/eLife.54997\">10.7554/eLife.54997</a>).</p>\n\n<p>The cone bipolar cell data has been described and&nbsp;published in the paper &quot;Inhibition decorrelates visual feature representations in the inner retina&quot; by&nbsp;Franke et al. 2017 (DOI:&nbsp;<a href=\"https://doi.org/10.1038/nature21394\">10.1038/nature21394</a>).&nbsp;</p>\n\n<p>This data is both a supplement to the Oesterle et al. paper and the code for this paper.</p>\n\n<p>The code&nbsp;is available in this&nbsp;<a href=\"http://github.com/berenslab/CBC_inference\">GitHub repository</a>.</p>\n\n<p>We recommend&nbsp;downloading the GitHub repository&nbsp;and to follow the instructions there.</p>", 
  "author": [
    {
      "family": "Oesterle, Jonathan"
    }, 
    {
      "family": "Behrens, Christian"
    }, 
    {
      "family": "Schr\u00f6der, Cornelius"
    }, 
    {
      "family": "Herrmann, Thoralf"
    }, 
    {
      "family": "Euler, Thomas"
    }, 
    {
      "family": "Franke, Katrin"
    }, 
    {
      "family": "Smith, Robert G"
    }, 
    {
      "family": "Zeck, G\u00fcnther"
    }, 
    {
      "family": "Berens, Philipp"
    }
  ], 
  "version": "Version 1.0", 
  "type": "dataset", 
  "id": "4185955"
}
106
17
views
downloads
All versions This version
Views 106106
Downloads 1717
Data volume 231.5 GB231.5 GB
Unique views 9696
Unique downloads 1515

Share

Cite as