DNP 2020

PHENIX Measurement of J/ψ Elliptic Flow in 200 GeV Au+Au Collisions at Forward Rapidity

Luis Bichon III

Vanderbilt University

Department of Physics and Astronomy

QGP, heavy quarks, and J/ψ

QGP & Heavy Quarks

- The QGP produced exhibits a nearly perfect fluid behavior.
- This behavior manifests itself in strong correlations between the produced particles.
- This behavior is seen for both light and heavy-flavor particles, but the detailed interactions of the heavy quarks in the medium are still under investigation.
- Because of their large mass they *may* not be thermalized and flow with the medium.

J/ψ Meson & Flow

- Production in p+p collisions vs. A+A collisions; Open heavy flavor vs. Quarkonia physics.
- Sources of J/ ψ flow (path length dependence, thermalization/recombination, primordial J/ ψ).
- At RHIC energies it is inconclusive if J/ψ exhibit flow.

~	5	
C	2	7
9	Y	
	Y	

Luis Bichon III

Particle Masses					
Name	Symbol/Content	Charge	Mass~(GeV)		
Charm	С	2/3	1.27 ± 0.02		
Beauty	b	-1/3	4.18 ± 0.03		
J/ψ	$c\bar{c}$	0	$3.096\pm6\times10^{-6}$		
$\psi(2S)$	$c\bar{c}$	0	$3.686\pm4\times10^{-5}$		

Dataset & J/ψ identification

- PHENIX has unique coverage at forward rapidity with muon identification
- The addition of FVTX in 2012 further improves the J/psi reconstruction and event plane determination
- Large Au+Au data sets collected by PHENIX in 2014 and 2016 will allow for statistically improved measurement of J/psi elliptic flow

Run 16 200 GeV Au+Au (MinBias)		
# of events	$15 \mathrm{B}$	
Integrated Luminosity	$7 \ {\rm nb}^{-1}$	

Run 14 200 GeV Au+Au (MinBias)		
# of events	19 B	
Integrated Luminosity	$7.5 { m ~nb^{-1}}$	

Run 10 200 GeV Au+Au (MinBias)		
# of events	5.7 B	
Integrated Luminosity	$1.5 {\rm ~nb^{-1}}$	

Current J/ ψ flow results (RHIC)

STAR (Published):

- v2 for Run 10 Au+Au collisions at 200 GeV
- Mid-rapidity at centrality 20-60%
- Electron decay channel

Heavy-Flavor decays:

- v2 for Run 4 Au+Au collisions at 200 GeV
- Mid-rapidity at centrality 20-60%
- Electron decay channel

PHENIX Preliminary:

- v2 for Run 10 Au+Au collisions at 200 GeV
- Forward rapidity at centrality 20-60%
- Dimuon decay channel

J/ψ flow at LHC energies

ALICE (Published):

- Inclusive J/ψ v2 for Pb+Pb collisions at 2.76 TeV
- Non-zero J/psi flow was measured both in Pb+Pb collisions as well as in p+Pb collisions.
- Transport model calculations:
 - Include J/ ψ regeneration (30%)
 - Thermalized charm quarks
 - Primordial J/ψ path length dependence

Combinatorial background subtraction

Like-sign Technique

• Uses geometric mean of positive and negative like-sign pairs to obtain a subtracted signal:

$$S = N^{+-} - 2\sqrt{N^{++}N^{--}}$$

 Where N⁺⁻ is the number of dimuon pairs, N⁺⁺ & N⁻⁻ are the number of like-sign pairs in each mass bin.

Event-Mixing Technique

• Obtain the uncorrelated background by using unlike-sign pairs from 2 different events.

$$S = FG^{+-} - (N \cdot BG^{+-})$$

- Where FG+- is the foreground signal, N is the normalization factor, and BG+- is the background signal obtained through event-mixing.
- Increased statistical precision when compared to the previous method.

Muon pair mass distribution

DNP 2020

Luis Bichon III

Like-sign subtracted dimuon mass distribution

Luis Bichon III

Same & mixed event dimuon mass distribution

 $FG^{+-}(\mu^{+}\mu^{-})$ Mass Distribution

 $BG^{+-}(\mu^{+}\mu^{-})$ Mass Distribution

9

Luis Bichon III

Mixed-event subtraction dimuon mass distribution

Luis Bichon III

Event plane method

Luis Bichon III

Fourier expansion of the invariant triple $E \frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} (1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_r)))$ particle distribution: $Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i)$

Event flow vectors:

Event plane angle:

$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i)$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$

Observed Flow:

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

Event Plane
$$\mathcal{R}_n = \sqrt{\frac{\langle \cos(2(\Psi_a - \Psi_b)) \rangle \langle \cos(2(\Psi_a - \Psi_c)) \rangle}{\langle \cos(2(\Psi_b - \Psi_c)) \rangle}}$$

 $v_n = rac{v_n^{ ext{obs}}}{\mathcal{R}_n}$

True Flow:

R

Event plane resolution

3.7

Luis Bichon III

12

Summary & moving forward

Summary:

- Using the PHENIX Run 14 Au+Au 200 GeV dataset dimuon invariant mass distributions are created and used in like-sign and mixed-event subtraction procedures.
- Signals centered at around the J/ ψ mass are clear, as well as ψ (2S) signal.
- A much better dataset and the addition of the FVTX detector to PHENIX will lead to a measurement of v₂ with significantly lower uncertainty.

Moving Forward:

- We will measure v_2 for J/ ψ and if we observe significant flow this could imply charm quark thermalization in QGP and J/psi formation by recombination
- Investigation of the ratio of yields between J/ ψ and ψ (2S), as well as the flow of open heavy flavor particles will provide a more complete understanding of the heavy flavor dynamics at RHIC.

Luis Bichon III