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ABSTRACT
An Infinite Impulse Response (IIR) notch filter based method is pro-
posed for multiple real sinusoids frequency estimation. The estima-
tor basically involves two steps. An initial frequency estimate is first
obtained by solving the Least Squares (LS) equation based on the
transversal part of the IIR filter. Based on the initial estimate, we in-
troduce the recursive part and a LS cost function is then constructed
from which the final estimate is acquired. Computer simulations
show that the performance of the estimator approaches the Cramer-
Rao Lower Bound for sufficiently high signal-to-noise ratios and/or
data lengths.

1. INTRODUCTION

Detection and estimation of sinusoidal components frequencies, in
the presence of broadband noise, are some of the most common
problems in signal processing [1]. Numerous techniques have been
developed for their treatment [2], including notch filtering [3], lin-
ear prediction, Yule-Walker methods [4] and subspace-based ap-
proaches [2].

Among the subspace-based methods, the Pisarenko Harmonic
Decomposer (PHD) [5] is of historical interest because it was the
first to exploit the eigenstructure of the covariance matrix, and its
performance has been extensively studied [6, 7]. Interestingly, the
PHD frequency estimator for a single real sinusoid can be imple-
mented in a very simple way [8].

Although the PHD method constitutes a simple approach to fre-
quency estimation, a number of statistical analysis have shown its
inefficiency [6, 8]. Some attempts to improve the performance of
the PHD estimator can be found in the literature. In [9], a variant
termed Reformed PHD (RPHD) for single tone frequency estima-
tion was proposed. Its performance is superior to that of the original
PHD, although the statistical analysis in [9] revealed its inefficiency.

A different approach to frequency estimation is the use of on-
line (i.e. adaptive) notch filters. However, high noise rejection and
sharp cutoff bandpass characteristics are desirable traits which can
only be obtained with very high order FIR structures, and thus In-
finite Impulse Response (IIR) notch filters have become a popular
choice. Several algorithms have been developed for the adaptation
of these systems, essentially seeking the minimum point of some
cost function; see e.g. [10, Ch. 10] and the references therein.

In earlier work [11], we have shown that prefiltering the incom-
ing data with the recursive part of an IIR filter, improves the perfor-
mance of PHD estimator for the single sinusoid case. In this paper,
we extend the principle of this approach to the multiple sinusoids
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case. In a first step, we extend the idea of the RPHD estimator to the
case of frequency estimation of multiple real-valued sinusoids. This
solution is used as an initial estimate of the frequencies. In a sec-
ond step, to improve the accuracy of the estimator, we prefilter the
input signal with a purely recursive IIR filter and then an improved
estimator, which we refer to as Prefiltered PHD (PPHD), is obtained
by minimizing a Least Squares (LS) cost function. The prefilter is a
function of the frequency parameters which are obtained in an iter-
ative manner. For the case of a single real tone, a closed-form fre-
quency estimator is also derived with performance approaching the
Cramer-Rao Lower Bound (CRLB) for a range of Signal to Noise
Ratio (SNR) values, provided that the data record length is suffi-
ciently large.

The rest of the paper is organized as follows. The problem of
multiple frequencies estimation is formulated in Section 2. The
PPHD estimator is introduced in Section 3. Recursive implemen-
tation is also presented. In Section 4, closed-form single-tone fre-
quency estimation is investigated. Simulation results are included to
evaluate the performance of the estimator under different conditions
in Section 5. Finally, conclusions are drawn in Section 6.

2. PROBLEM FORMULATION

The problem of multiple real sinusoidal frequency estimation is for-
mulated as follows. We are interested in the estimation of the un-
known frequencies wm, of pure sine waves sm(n), immersed in a
noise u(n). The model can be expressed as

y(n) = s(n)+u(n) (1)

=
M

∑
m=1

sm(n)+u(n)

=
M

∑
m=1

αm sin(wmn+ϕm)+u(n), 1≤ n≤ N,

where N corresponds to the number of observations, M is the number
of sinusoids, αm are their amplitudes, ϕm are their random phases
and u(n) is a zero mean additive white noise, with variance σ2

u ,
which is assumed to be independent of sm(n). The SNR for the m-th

sinusoid is defined as SNRm
4
=α2

m/(2σ2
u ).

To estimate the sinusoidal components frequencies, an M-order
IIR filter with constrained parameterization is used for a notch-
based-estimation technique. The following filter is typically used
in practice [3]

H(z) =
A

(
z−1)

A
(
rz−1

) , (2)

where A
(

z−1
)

= a0 +a1z−1 + .....+aMz−M + ...+a2M−1z−2M+1 +

a2Mz−2M , is a polynomial with symmetric real coefficients am =
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a2M−m,m = 0, ...,M and a0 = 1. The parameter r (0 ≤ r < 1) is
known as the pole contraction factor. The roots of the polynomial
A(z−1) lie on the unit circle in the complex z-plane in complex con-
jugate pairs. The polar angles of these roots are defined by the fre-
quencies wm, where m = 1, ..., .M. The relationship between wm and
A

(
z−1) is then given by

2M

∑
k=0

ak exp(− jwmk) = 0 for m = 1, ...,M. (3)

The basic idea underlying notch-filter-based estimation techniques
is the minimization, with respect to {am}, of the power of the notch
filter output when the input is the observed signal y(n). Due to the
presence of {am} in both the numerator and the denominator of (2),
this output power is a nonquadratic function of {am}. Moreover, the
presence of the noise term u(n) in (1) will alter the location of this
minimum, unless the pole contraction factor is sufficiently close to
one [12].

For these reasons, we consider the minimization of the output
power but fixing the denominator in (2), i.e. the notch filter transfer
function becomes now

H̄(z−1) =
A(z−1)
B(rz−1)

, (4)

where B
(
z−1) = 1+b1z−1 + .....+bMz−M + .....+b2M−1z−2M+1 +

z−2M is a polynomial with fixed symmetric real coefficients bm =
b2M−m,m = 1, ...,M−1. A typical choice for {bm} are the true pa-
rameters {am}; since {am} are not available, later on we will present
a means to select {bm}.

3. PPHD ESTIMATOR

Based on the reformulation presented in previous section, the IIR
notch filter output e(n) is defined as

e(n) =
M−1

∑
m=0

ãm [ỹ(n−m)+ ỹ(n−2M +m)]+ ãM ỹ(n−M), (5)

where {ãm} are the estimates of {am} up to a scalar since ã0 is not
fixed to be unity and ỹ(n) is the result of prefiltering y(n) with the
recursive part 1/B(rz−1). ỹ(n) consists of a sinusoidal component
s̃(n) and a colored noise component ũ(n).

Defining the (M +1)×1 vectors

Ã
4
= [ã0, ã1, ..., ãM ]T ,

Ỹn
4
= [ỹ(n)+ ỹ(n−2M), ỹ(n−1)+ ỹ(n−2M +1), ...., ỹ(n−M)]T ,

S̃n
4
= [s̃(n)+ s̃(n−2M), s̃(n−1)+ s̃(n−2M +1), ...., s̃(n−M)]T ,

Ũn
4
= [ũ(n)+ ũ(n−2M), ũ(n−1)+ ũ(n−2M +1), ...., ũ(n−M)]T ,

and the autocorrelation matrices of Ỹn, S̃n and Ũn

RỸỸ
4
=

1
N−2M

N

∑
n=2M+1

ỸnỸ T
n ,

RS̃S̃
4
=

1
N−2M

N

∑
n=2M+1

S̃nS̃T
n ,

RŨŨ
4
=

1
N−2M

N

∑
n=2M+1

ŨnŨT
n .

Using this notation, the IIR notch filter output e(n) can be written as

e(n) = ÃT Ỹn = ÃT S̃n + ÃTŨn. (6)

To estimate the filter coefficients {ãm}, we minimize the following
LS criterion

J(N)
4
=

1
N−2M

N

∑
i=2M+1

e2(i),

= ÃT RỸỸ Ã,

= ÃT RS̃S̃Ã︸ ︷︷ ︸
(1)

+ ÃT RŨŨ Ã︸ ︷︷ ︸
(2)

. (7)

Since the second term of (7) depends on Ã, the minimum of J(N)
does not correspond to the desired vector. Therefore, a biased esti-
mate will result when minimizing J(N) in the presence of noise.

To avoid this dependence, we propose to minimize the following
cost function J̄(N)

J̄(N)
4
=

J(N)
ÃT RŨŨ Ã

=
ÃT RỸỸ Ã
ÃT RŨŨ Ã

. (8)

This ratio is known as generalized Rayleigh quotient [13]. The vec-
tor Ã minimizing J̄(N) satisfies

RỸỸ Ã = J̄(N)RŨŨ Ã = σ2
u J̄(N)R̄ŨŨ Ã, (9)

where R̄ŨŨ is the normalized autocorrelation matrix of Ũn. Thus,
the vector Ã is the generalized eigenvector corresponding to the min-
imum generalized eigenvalue of

(
RỸỸ , R̄ŨŨ

)
.

An estimate of R̄ŨŨ can be evaluated for sufficiently large N as

lim
N→∞

R̄ŨŨ =




2(ρ0 +ρ2M) 2(ρ1 +ρ2M−1) · · · 2ρM
2(ρ1 +ρ2M−1) 2(ρ0 +ρ2M−2) . . . 2ρM−1

...
...

...
...

2ρM 2ρM−1 . . . ρ0


 ,

(10)
where the autocorrelation sequence ρp, for p = 0,1, ...,2M, is

ρp
4
=

1
σ2

u
lim

N→∞

[
1

N−2M

N

∑
i=2M+1

ũ(i)ũ(i− p)

]
. (11)

Setting cm = rmbm, the sequence ρp can be evaluated given that

ρp = δp− c1ρp−1− ...− c2Mρp−2M , (12)

where δp =
{

1 if p = 0
0 otherwise .

Equation (12) induces the following system of equations

QΩ = Γ, (13)

where Ω = [ρ0,ρ1, ...,ρ2M ]T , Γ = [1,0, ...,0]T and Q is given by



1 c1 . . . cM cM+1 . . . c2M
c1 1+ c2 . . . cM+1 cM+2 . . . 0
...

...
...

...
...

...
...

cM cM−1 + cM+1 . . . 1+ c2M 0 . . . 0
cM+1 cM + cM+2 . . . c1 1 . . . 0

...
...

...
...

...
...

...
c2M c2M−1 . . . cM cM−1 . . . 1




,
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Hence, Ω is evaluated as

Ω = Q−1Γ. (14)

In the following, we refer the estimator based on the generalized
eigenproblem (9) as Prefiltered PHD (PPHD) estimator.

3.1. Particular Case: r = 0

In the particular case, when r = 0, the IIR notch filter is equivalent
to the transversal part A

(
z−1). The estimate of Ã in this case is

given by the generalized eigenvector corresponding to the minimum
generalized eigenvalue of

(RYY ,D) , (15)

where D is an (M + 1 × M + 1) matrix defined as: D =
diag(2,2, ...,2,1) and RYY is the autocorrelation matrix of the vector
Y = [y(n)+ y(n−2M),y(n−1)+ y(n−2M +1), ....,y(n−M)]T .

For the particular case of a single real-valued sinusoid, it is pos-
sible to show that a closed-form estimator can be obtained from the
generalized eigenvector problem (15). This estimator is equivalent
to the RPHD estimator presented in [9]

ŵ = arccos


 γN +

√
γ2

N +8β 2
N

4βN


 , (16)

where

γN
4
=

N

∑
i=3

(
[y(i)+ y(i−2)]2−2y2(i−1)

)
, (17)

βN
4
=

N

∑
i=3

[y(i)+ y(i−2)]y(i−1). (18)

Therefore, the generalized eigenvalue approach (15) is an extension
of the RPHD estimator to the case of multiple sinusoids.

3.2. Proposed algorithm

Observe that, if properly chosen, the data prefilter 1/B(rz−1) has
the potential to enhance the desired frequencies over the noise, thus
improving the effective SNRm. So far, we have assumed that the
parameters {bm} of the prefilter are fixed a priori. Note that these
parameters determine the angular position of the poles of the data
prefilter, and thus ideally one would like to choose {bm} = {am}.
Since {am} are of course not available, it seems natural to use an
iterative scheme in which the prefilter is designed at each iteration
based on the frequency estimate obtained in the previous step. In the
first iteration, r = 0 can be used (thus, the extension of the RPHD
estimator to the multiple sinusoid case, presented in the previous
section, is used as starting point), after which a suitable value r > 0
is set. The iterative procedure is summarized as follows

1. Find an initial estimate {ã(0)
m } given by the generalized RPHD

by computing the generalized eigenvector corresponding to the
minimum generalized eigenvalue of (RYY ,D).

Set r to a suitable value r ∈ (0,1). For k = 1, 2, 3, . . .

2. Set
{

b̃(k)
m

}
=

{
ã(k−1)

m

}
, where

{
b̃(k)

m

}
are the estimates of

the coefficients
{

b(k)
m

}
, and obtain the prefiltered data ỹ(i) =

[1/B(rz−1)]y(i).
3. Evaluate the estimate of R̄ŨŨ using (10) and (14).

4. Compute the new estimate {ã(k)
m } corresponding to the gener-

alized eigenvector corresponding to the minimum generalized
eigenvalue of

(
RỸỸ , R̄ŨŨ

)
.

5. Repeat steps 2, 3 and 4 until convergence. Obtain the frequency
estimates ω̃m via (3).

Simulation results in Section 5 demonstrate that using few iterations
in the estimation procedure, the algorithm is able to achieve global
convergence with performance approaching the CRLB for suffi-
ciently large SNRs and/or data lengths. The major computational
requirement of the algorithm is to determine the generalized eigen-
decomposition vectors, which requires O((M +1)3) multiplications
in addition to O(N(M + 1)2) multiplications for the estimation of
the autocorrelation matrix. Comparing with high-resolution methods
such as MUSIC and ESPRIT, which require O(N p2) multiplications
for the estimation of the data correlation matrix, where p > 2M + 1
is the size of this matrix, in addition to O(p3) multiplications in
the eigendecomposition of this estimated matrix, the proposed es-
timator has thus the lower complexity implementation. Moreover,
when compared to the constrained weighted LS frequency estima-
tors, developed in the Pisarenko framework in [14] from a gen-
eralized eigenvalue problem, the proposed estimator has the lower
complexity implementation since the above estimator, in addition to
O((M + 1)3) multiplications required for the generalized eigende-
composition problem, O(N3) multiplications are required to deter-
mine the inverse of the weighting matrix in this algorithm.

4. CLOSED-FORM ESTIMATOR FOR SINGLE-TONE
FREQUENCY ESTIMATION

For single-tone frequency estimation, it is possible to derive a
closed-form estimator as follows. An approximate of R̄ŨŨ , which
is a 2× 2 matrix for M = 2, can be evaluated as in (10), where we
can easily show, using (14), that ρp for p = 0,1,2 is given by

ρ0 =
(

1+ r2
)

ξr,b, (19)

ρ1 = −rbξr,b, (20)

ρ2 = −r2
(

r2−b2 +1
)

ξr,b, (21)

with
ξr,b

.=
1

(
1− r2

)((
1+ r2

)2− r2b2
) . (22)

The matrix RỸỸ is evaluated as

RỸỸ =
(

β0 β1
β1 β2

)
, (23)

where

β0 =
1

N−2M

N

∑
i=2M+1

(ỹ(i)+ ỹ(i−2))2, (24)

β1 =
1

N−2M

N

∑
i=2M+1

ỹ(i−1)(ỹ(i)+ ỹ(i−2)), (25)

β2 =
1

N−2M

N

∑
i=2M+1

ỹ2(i−1). (26)

The generalized eigenvalue problem of (9) can now be expressed as
(

ã0β0 + ã1β1
ã0β1 + ã1β2

)
= λ

(
2ã0(ρ0 +ρ2)+2ã1ρ1

2ã0ρ1 + ã1ρ0

)
. (27)

Eliminating λ using (27) and setting ã0 = 1, yields to

υN ã2
1 +ηN ã1−2ϖN = 0, (28)
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where

υN = (1+ r2)β1 +2rbβ2, (29)

ηN = (1+ r2)β0−2(1− r4 + r2b2)β2, (30)

ϖN = rbβ0 +(1− r4 + r2b2)β1. (31)

The root which corresponds to the frequency estimate is

ã1 =−
ηN +

√
η2

N +8υNϖN

2υN
. (32)

An iterative implementation of this closed-form single-tone fre-
quency estimator can be derived as follows

1. Obtain an initial estimate ã(0)
1 based on RPHD (i.e. (32) with

r = 0).
Set r to a suitable value r ∈ (0,1). For k = 1, 2, 3, . . .

2. Set b̃(k)
1 = ã(k−1)

1 and obtain the prefiltered data ỹ(i) =
[1/B(rz−1)]y(i).

3. Compute the new estimate ã(k)
1 using (32).

4. Repeat Steps 2 and 3 until convergence. Obtain the frequency
estimate ω̃1 via ω̃1 = arccos(ã(k)

1 ).

5. NUMERICAL RESULTS

Computer simulations were carried out to validate the performance
of the the proposed algorithm.

In the algorithm implementation, we adopt a different pole con-
traction factor r(k) at different iterations. In practice, no a priori
information is available on the input sine wave so that its frequency
may fall outside of the prefilter passband, especially for small SNR
and/or short data lengths. Therefore, it makes sense to use a wider
passband at the first iteration that becomes narrower as iterations
evolve. This ‘bandwidth thinning’ strategy is common in the design
of adaptive notch filters [10]. A simple way to do this is to let r grow
exponentially from r(1) to a final value r(∞) according to

r(k+1) = λ r(k) +(1−λ )r(∞), 0 < λ < 1. (33)

The parameter λ determines the change rate of r(k), which should be
larger for large data lengths in order to speed up convergence. On
the other hand, with short data records a slower variation of r should
help increase sensitivity to the presence of the sine wave. Thus, λ
should somehow be inversely proportional to N.

In our simulation, we apply the algorithm with the numerical
values r(1) = 0.75; r(∞) = 0.995 and

λ (N) = 0.93/(1+(N/200)2). (34)

In Fig. 1 and Fig. 2, we consider a single sinusoid with ω1 =
0.4π . Fig. 1 shows the MSE along the iterations setting SNR = 10
dB, and for N = 20, 200 and 300. Similarly, in Fig. 2 we fix N = 200
and consider SNR = 0, 10 and 20 dB. Also shown is the CRLB for
this frequency estimation problem [15].

A noticeable improvement can be observed with just one itera-
tion; furthermore, convergence is achieved in about four iterations,
and the achieved MSE is very close to the CRLB.

In the following simulation, we consider 3 sinusoids with fre-
quencies [w1, w2, w3] = [0.3, 0.34, 0.7]π . The performance of the
PPHD estimator (using four iterations) is compared to the RPHD
estimator, the LS version of R-ESPRIT developed in [16], root-
MUSIC [17] as well as the CRLB.

In Fig. 3, Fig. 4 and Fig. 5, we depict the MSE of the 3 frequen-
cies as function of SNR3. We consider that SNR1=SNR2=10 dB and
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Fig. 1. Mean squared frequency errors versus iteration number k.
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Fig. 2. Mean squared frequency errors versus iteration number k.
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Fig. 3. Mean Squared frequency errors versus SNR3 for w1.

SNR3 varies from -5 to 20 dB. The sequence length N = 500 and the
size of the snapshot vectors for root-MUSIC and R-ESPRIT were
fixed to 30. This value is chosen in order to achieve a compromise
between good performance and lower complexity computation. As
seen, the PPHD has comparable performance as root-MUSIC and
R-ESPRIT.

In Fig. 6, the 3 sinusoids have the same SNR=10 dB. We plot
the MSE as function of N. In addition to outperforming RPHD, the
MSE achieved by the proposed estimate is close to the CRLB.
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Fig. 4. Mean Squared frequency errors versus SNR3 for w2.
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Fig. 5. Mean Squared frequency errors versus SNR3 for w3.
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6. CONCLUSION

In this paper, a frequency estimation algorithm for multiple real si-
nusoids in white noise based on IIR notch filter was presented. The
estimator basically involves two steps. An initial frequency estimate
is first obtained by solving the Least Squares equation based on the
transversal part of the IIR filter. Based on the initial estimate, we in-
troduce the recursive part and an optimally Least Squares cost func-
tion is then constructed from which the final estimate is acquired,
referred to as PPHD estimator. For a single tone, a closed-form fre-
quency estimate was obtained. Simulation results show that PPHD
performance is close to the CRLB.
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