A Simple Circuit to Visualize Space Vectors by an Oscilloscope

Predrag Pejović

Introduction

- sometimes it is nice to visualize space vectors ...
- three phase voltage system ...
- the only requirement $v_{12}+v_{23}+v_{31}=0$
- let us define $\vec{v}=\left(v_{X}, v_{Y}\right)$
- $v_{12}=\vec{v} \cdot(1,0)=v_{X}$
- $v_{23}=\vec{v} \cdot\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=-\frac{1}{2} v_{X}+\frac{\sqrt{3}}{2} v_{Y}$
- $v_{31}=\vec{v} \cdot\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=-\frac{1}{2} v_{X}-\frac{\sqrt{3}}{2} v_{Y}$
- these are line voltages from (v_{X}, v_{Y})
- the transform is invertable

Space Vectors

Three-Phase Voltage Source Inverter

The Inverter, States and Line Voltages

Three-Phase Voltage Source Inverter, Switch State Variations and Line Voltages

state	S1	S3	S5	v_{12}	v_{23}	V_{31}
0	0	0	0	0	0	0
1	0	0	1	0	$-V_{I N}$	$V_{I N}$
2	0	1	0	$-V_{I N}$	$V_{I N}$	0
3	0	1	1	$-V_{I N}$	0	$V_{I N}$
4	1	0	0	$V_{I N}$	0	$-V_{I N}$
5	1	0	1	$V_{I N}$	$-V_{I N}$	0
6	1	1	0	0	$V_{I N}$	$-V_{I N}$
7	1	1	1	0	0	0

The Inverter, Achievable Space Vectors

The Inverter, Phase Voltages Referred to v_{-}

Phase voltages v_{1} (yellow), v_{2} (cyan), and v_{3} (magenta), referred to v_{-}.

The Inverter, Phase Voltages Referred to v_{N}

Phase voltages v_{1} (yellow), v_{2} (cyan), and v_{3} (magenta), referred to the neutral point voltage v_{N}.

Some Math ...

- $v_{N}=\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)$
- lets refer v_{1}, v_{2}, and v_{3} to v_{N}
- then $v_{1}+v_{2}+v_{3}=0$
- finally:

1. $v_{X}=2 v_{1}+v_{3}$
2. $v_{Y}=\sqrt{3}\left(v_{1}+v_{2}\right)$

- just scale with k small enough and voila!

Linear Combination of Voltages . . .

The circuit used to provide linear combination of two voltages.

Neutral Point ...

The circuit used to set the neutral point voltage.

Complete Circuit Diagram

The circuit for analog computation of the space vector components.

Some Math in the Paper ...

- resistors?

1. choose R_{a} and R_{b}
2. $R_{c}=\frac{2 k}{1-3 k} R_{a}$
3. $R_{d}=\frac{\sqrt{3} k}{1-2 \sqrt{3} k} R_{b}$

- the limit for $0 \leq k \leq \frac{1}{2 \sqrt{3}} \approx 0.28868$
- choose R_{n} such that $R_{a}, R_{b} \gg \frac{1}{3 \sqrt{3} k} R_{n}$
- maybe redo choice for R_{a} and R_{b}, increase to save power
- approximation!
- and some more math and a program to verify the design ...
- ... just read in the paper, can't fit here

Experimental Results: Arduino Board

Space vector components $v_{x}(t)$ and $v_{y}(t)$.

Experimental Results

Space vector trajectory, persistence 1 s .

Experimental Results

Space vector trajectory, infinite persistence.

Experimental Results

Recorded space vector positions, one screen, 2500 data points.

Experimental Results

Observed space vectors, 25 million data points, intensity proportional to the number of space vector occurrences.

Experimental Results

Observed space vectors, 25 million data points, intensity proportional to the logarithm of the number of occurrences.

Experimental Results

Observed space vectors, 25 million data points, black dot corresponds to at least one occurrence of the space vector.

Conclusions

- a circuit to visualize space vectors
- analog computation, just nine resistors
- two voltage probes needed (differential!)
- after you get the data, how to present?
- transitions are short!
- collect lots of data, mimic persistence ...

1. intensity proportional to the number of occurrences
2. intensity proportional to the logarithm of the \# of occurrences
3. dot if a space vector appeared there

- choose the presentation mode according to your needs
- enjoy!

