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ABSTRACTABSTRACTABSTRACTABSTRACT
This paper discusses an approach to accurate sinusoid
modeling of audio. We propose an iterative framework which
functions as a “wrapper” that works with arbitrary sinusoid
modeling systems to boost their accuracy. It involves one or
more reestimation steps. In each step the parameter estimates
are updated by combining a second set of parameters
evalulated from the latest modeling error signal. An additive
scheme and a multiplicative scheme are proposed for this
reestimation step. On a limited test set the framework is
shown to offer 2dB to 40.5dB (average 14.6dB) improvement
in signal-to-residue ratio within 5 updates, which is 56.3% to
98.6% (average 79.5%) of the largest possible improvement,
in dB, obtained by interpolating exact parameters.

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Sinusoid modeling uses slow-varying sinusoids to represent
deterministic components in speech and audio [1][2]. A slow-
varying complex sinusoid, say x, is defined as
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where f, a and φ are the instantaneous frequency, amplitude
and phase angle. In reverse, given the complex sinusoid x,
the instantaneous frequency, amplitude and phase angle can
be expressed as
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where Arg is the phase angle unwrapped modular 2π, and
Log is the complex logarithm function unwrapped modular
j2π. Parameters of a complex sinusoid is unique up to a phase
wrap of 2kπ, k∈Z. If both f and a are slow-varying, then x is
said to be slow-varying. In practice we always deal with real-
valued sinusoids. Unlike complex ones, real time-varying
sinusoids generally do not have unique parameter sets [3]. A
real sinusoid is said to be slow-varying if any of its parameter
sets is.

A complete sinusoid modeling system includes an
analyzer and a synthesizer. The analyzer finds sinusoidal
components and evaluates their instantaneous frequencies,
amplitudes and phase angles from the waveform at sparsely
distributed measurement points. The synthesizer rebuilds
these components as time-varying sinusoids by interpolating

the estimated parameters. Figure 1 gives a brief outline of a
sinusoid modeling system, in which the single lines carry
waveform representation, and the double line carries sinusoid
representation. A module that converts between these two
representations is either an analyzer (marked by “A”) or a
synthesizer (marked by “S”), depending on the direction of
conversion.

parameter set output sinusoidsinput signal

A S

Figure 1. Sinusoid modeling data flow

Sinusoid modeling is most useful when each sinusoid
accurately appoximates a deterministic component, known as
a partial, in the analyzed audio, so that we may remove a
partial by direct subtraction and obtaining a clean residue. In
practice it is often difficult, and a phantom partial often
remains in the residue, which preserves much perceptual
characteristics of the removed sinusoid. We attribute this to
three types of errors: model error, analysis error, and
synthesis error. Model error occurs if the target partial can not
be represented as a slow-varying sinusoid, such as in a
vibrato with heavy reverb. Analysis error occurs if the
parameters are not accurately estimated, and synthesis error
occurs if the amplitude and frequency interpolation laws used
in the synthesizer do not coincide with the true ones. In this
paper we focus on the analysis error of real slow-varying
sinusoids. Due to the non-uniqueness of parameters of real
time-varying sinusoids, it is difficult to separate analysis and
synthesis errors in any strict sense. We always address the
total error of the two stages, which can be measured by
comparing two waveforms, and which we try to reduce
without altering the synthesis settings. Analysis and synthesis
errors are most prominent for time-varying sinusoids (also
known as non-stationary sinusoids), mostly due to the lack of
a priori knowledge on their parameter variations.

Many efforts have been reported for the accurate
modeling of sinusoids. On the analyzer part, methods have
been proposed for the accurate estimation of parameters.
Early methods [1][2][4] assume short-time stationarity and
estimate parameters without considering parameter variations.
Later methods take parameter variation into consideration by
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assuming certain parametric laws: linear frequency and
amplitude law is used in [5]-[7], linear frequency and log
amplitude law is used in [8][9], while [10] suggests using a
dictionary from which a best-matching law can be selected.
These methods easily fail if the presumed laws do not
coincide with those of the signal. A reestimation-based
method has been proposed to cope with arbitrary parameter
variations [11], which also lays the foundation of the
multiplicative reestimation scheme to be discussed in this
paper. Improvements on the synthesizer have been limited,
partially due to the fact that synthesis errors are
comparatively less prominent, and can be easily controlled by
using smaller hops between measurement points. Several
interpolation models smoother than the original MQ
synthesizer [1] have been developed, including polynomial
interpolation with pre-evaluated derivatives [12] and cubic
splines [11].

In this paper we generalize the method in [11] into an
iterative reestimation framework, which updates the
parameter estimates to compensate for modeling errors. This
framework neither presumes any specific parameter variation
law nor relies on any specific analyzer or synthesizer, but
wraps up arbitrary analyzer/synthesizer to boost modeling
accuracy of sinusoids with arbitrary parameter variations. In
the following section we propose two reestimation schemes,
an additive scheme and a multiplicative one, within this
framework. The effectiveness of the reestimation framework
will be tested in section 3.

2.2.2.2. THETHETHETHEREESTIMATIONREESTIMATIONREESTIMATIONREESTIMATIONMETHODMETHODMETHODMETHOD

The common framework of the two reestimation schemes is
illustrated in Figure 2, where single and double lines carry
waveform and sinusoid representations respectively. Let x be
the original signal and x1 be its estimate with parameter
set . We compare x and x1 to obtain an error signal),,( 111 ϕϕ ′a
y1, which captures the information of x that is lost in x1. We
further evaluate sinusoid parameters from y1 and),,( 111 θθ ′b
combine it with into , from which a),,( 111 ϕϕ ′a ),,( 222 ϕϕ ′a
sinusoid x2 can be constructed. If is a good model),,( 111 θθ ′b
of y1, then a large part of the information of x lost in x1 can be
restored in x2.
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Figure 2. The reestimation framework

Apart from analyzer and synthesizer modules that
already exist in any sinusoid modeling system, Figure 2 also

contains a comparison module that calculates the error signal
y1 by comparing two waveforms, and a combination module
that combines two sinusoid parameter sets into one. The latter
is the exact inverse of the former in sinusoid domain, so that
if no error is incurred at A2 then the combined parameter set is
accurate for x. In other words, the analysis error in x2 depends
solely on how well y1 is estimated, regardless of x1. Each pair
of comparison and combination modules make up a
reestimation scheme within the framework. Two conditions
must be met for a reestimation scheme to be useful: that y1 be
a slow-varying sinusoid itself, and that y1 be more accurately
estimated than x has been. In this paper we discuss the
additive and multiplicative schemes, named after the
operation taken in the combination module.

2.12.12.12.1 AdditiveAdditiveAdditiveAdditivereestimationreestimationreestimationreestimation

The following proposition states that if x and y are complex
sinusoids with slow-varying amplitudes and their frequencies
are close, then z=x+y is a complex sinusoid with a slow-
varying amplitude and a frequency close to theirs, unless x
and y cancel each other when added. In addition, if x and y
have smooth amplitude variations and slow frequency
variations, so has z.
PropositionPropositionPropositionProposition1.1.1.1. Let x=aejφ and y=bejθ be complex sinusoids, a,
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This is proved by substituting the following
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The value of β remains at 1 when Re(x*y) is positive, i.e. x
and y are in phase. When Re(x*y)<0, β grows above 1 and is
upper-bounded by , where α is the ratio of a2)1(41 −−+ αα
and b. β→∞ as y→-x, indicating that if -y is a good
approximation of x, then z tends to be noise-like.
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Based on Proposition 1, we propose an additive
reestimation scheme in which the error signal y1 is taken as
the modeling residue of , i.e.),,( ϕϕ ′a

y1= x – x1. (6)
If x1 does not accurately model x, then y1 must be a slow-
varying sinusoid. The combination module combines the
models by
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where . (7b) is derived during the proof of (3b).11 θϕδ −=
Apart from the standard parameters, to use (7b) we need
amplitude derivatives of x1, which can be obtained from the
synthesis module.

The concept of additive reestimation has previously been
explored in [13], where two sinusoids are “fused” without
considering parameter variations. The additive scheme
improves modeling accuracy if the modeling residue of y1 is
smaller than y1 itself, which is usually true if y1 is a slow-
varying sinusoid.

2.22.22.22.2 MultiplicativeMultiplicativeMultiplicativeMultiplicativereestimationreestimationreestimationreestimation

The following proposition states that if x and y are complex
sinusoids with slow-varying amplitudes and frequencies, then
so is z=xy.
PropositionPropositionPropositionProposition2222. Let x=aejφ and y=bejθ be complex sinusoids, a,

b, φ, θ∈R, , , and let z=cejψ=xy, c,1, ε≤
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This is proved by differentiating c=ab and ψ=φ+θ.
Based on Proposition 2, we propose a multiplicative

reestimation scheme in which the error signal y1 is taken as
complex ratio of x and x1, i.e.

(9)
1

1 x
xy =

The combination module combines the models by
, , (10)112 baa = 112 θϕϕ += 112 θϕϕ ′+′=′

The multiplicative scheme was previously developed in
the context of demodulation [11]. It improves sinusoid
modeling if parameters of y1 are more accurately evaluated
than those of x1. This is usually true if has good or),,( 111 ϕϕ ′a
mediocre accuracy, so that the division by x1 in (9) removes a
large part of parameter dynamics from x.

2.32.32.32.3 CascadeCascadeCascadeCascadeofofofof reestimationreestimationreestimationreestimationupdatesupdatesupdatesupdates

Comparing Figures 1 and 2, it is obvious that the components
within the dashed box in Figure 2 compose an analyzer
module. By using this analyzer in the place of A1, (or
equivalently, using x2 in the place of x1,) we are able to repeat
the reestimation process to further improve accuracy. This

cascading of the reestimation framework leads to an iterative
procedure. The choice of analyzer, synthesizer and
reestimation scheme is free to vary from one iterate to the
next. The process stops either after a preset number of iterates,
or when no substantial accuracy improvement is gained in
the latest iterate.

3.3.3.3. TESTSTESTSTESTSTESTS

3.13.13.13.1 TestTestTestTest setsetsetset

We run tests on three groups of synthesized sinusoids,
including linear chirps, amplitude modulated, and amplitude-
and-frequency modulated sinusoids. All samples are 8192
points long. A fixed window size 1024 and frame hop 512 is
used, giving 15 basic measure points (15 frames) per sample.
The sinusoids have a base amplitude of 1 and are quantized to
the precision of 2-10.

Group 1 contains 120 samples, with 20 central
frequencies uniformly sampled from 255.00bin to 255.95bin
(1bin=1/1024), combined with 6 frequency slopes 2f1 at 0,
0.25, 0.5, 1, 2, 4 bins per frame (i.e. per 512 points). Results
are given as functions of f1, averaged over f0.

Group 2 contains 220 samples, with the same 20 f0’s as
above, 6 modulation depths AM from 0.15 to 0.9 with
modulation period TM fixed at 5 frames, and 6 TM’s from 5 to
15 frames with AM fixed at 0.9. The modulation phasesφM are
selected at random. Results are given as functions of AM and
TM in two separate tests, averaged over f0.

Group 3 contains 220 samples, with the same 20 f0’s as
above, 6 frequency modulation extents AM from 1 bin to 32
bins with modulation period TM fixed at 5 frames, and 6 TM’s
from 5 to 15 frames with AM fixed at 8 bins. The modulation
phasesφM are selected at random. The amplitudes are taken as
quadratic functions of frequency so that the peak frequency
has twice the amplitude as f0. Results are given as functions of
AM and TM in two separate tests, averaged over f0 .

The test set is summarized in Table 1, where all
frequency parameters are in bins, and TM is in frames.

Table 1. Test set

3.23.23.23.2 TestTestTestTest settingssettingssettingssettings

We use signal-to-residue ratio (SRR) for evaluating sinusoid
modeling accuracy. Least square (LS) [3] and reassignment
(RA) [7] estimators are tested within the framework as basic
analyzers. LS is engaged as a specimen of estimators that do

Group Control
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not consider parameter variation. RA is engaged as one of the
start-of-the-art estimators which explicitly address the non-
stationarity issue. In this test RA is implemented in an
enhanced version following [11]. Cubic spline interpolator is
used as the basic synthesizer.

For each basic analyzer four system settings are tested,
including the basic system alone, basic system with one
additive update (A), basic system with one multiplicative
update (M), and basic system with up to 5 better-of-the-two
updates (I5). In the last setting both schemes are tried at every
iterate, but only the better reestimate is preserved to start the
next iterate, until neither is better than the original estimate, or
5 iterates are finished.

Apart from the above eight settings, we also construct a
“reference” sinusoid from the true parameters and measure its
SRR. Despite the non-uniqueness issue, this SRR provides a
good reference on the best possible accuracy given the
interpolator. The gap between the basic SRR and this
reference SRR measures how much space is available for
improvement. We call it improvement room for convenience.

3.33.33.33.3 ResultsResultsResultsResults

Figure 3 shows the results tested on linear chirps, depicted as
SRR (y axis) against chirp rate (x axis) for LS in all four
settings. We also include the result of RA for comparison. For
linear chirps RA in the enhanced implementation provides
accurate results for all parameters. In Figure 1 the SRR of RA
is capped at about 68dB by the limited input precision. LS
also provides accurate frequency estimates for linear chirps,
but is unable to estimate amplitude and phase angle
accurately under its native stationarity assumption. However,
Figure 1 shows that by wrapping LS in the iterative
framework we can achieve the accuracy almost as good as
that of RA within 5 iterates. We have further counted that the
average number of iterates used is 3.45, out of which 1.45
(42%) are additive updates and 2 are multiplicative. Of all the
first iterates 12.5% are additive, 83.3% are multiplicative,
while the rest 4.2% do not see improvement in overall
accuracy by either scheme. These observations agree with the
direct comparison in Figure 1, which shows the multiplicative
scheme more effective than the additive scheme. RA does not
benefit from the reestimation framework, as the basic RA
analyzer is already perfect for linear chirps. The reference
SRR result is not drawn in Figure 3, as it overlaps that of RA.
In this test LS-I5 offers an average of 40.5dB improvement in
SRR over LS, covering 98.6% of the improvement room.

x: f1 (bin/frame), y: SRR (dB)

Figure 3. Results for linear chirps

Results for amplitude modulated sinusoids are given in
Figure 4. In the upper half we depict SRR against modulation
depthAM, while the modulationTM period is fixed at 5 frames;
in the lower half we depict SRR against modulation period
while the modulation depth is fixed at 0.9. Results of LS in
four settings are found in the left column, of RA are found in
the right column. The reference SRR is included as dotted
lines.

TM=5 frames, x:AM, y: SRR (dB) TM=5 frames, x:AM, y: SRR (dB)

AM=0.9, x: TM (frame), y: SRR (dB) AM=0.9, x: TM (frame), y: SRR (dB)

Figure 4. Results for AM sinusoids

For these signals LS and RA are similar in accuracy and
behaviour. The effect of reestimation is clearly visible by
comparing the distance of these curves from the dotted
reference line. Unlike for linear chirps, for amplitude
modulated sinusoids additive reestimation is shown to be the
more effective of the two schemes, taking up 79.6% of all
first iterates. In all settings most improvements are obtained
from the first update. LS-I5 offers an average of 10.2dB
improvement in SRR, covering 84.9% of the improvement
room. With RA the two numbers are 9.4dB and 77.1%.

Results for frequency modulated sinusoids with
accompanying amplitude modulation are given in Figure 5. In
the upper half we depict SRR against frequency modulation
extentAM, while the modulationTM period is fixed at 5 frames;
in the lower half we depict SRR against modulation period
while the frequency modulation extent is fixed at 8 bins. The
left column compares results of LS in four settings together
with basic RA, the right column compares results of RA in
four settings together with LS-I5. The reference SRR is
included as dotted lines.

For these signals basic RA consistently outperforms
basic LS, but is easily beaten by LS with no more than 5
updates. The reestimation schemes improve the accuracy of
both basic analyzers alike. At the end of 5 updates LS and RA
show very similar results. Improvements appear to be more
gradual with varying frequencies, therefore better accuracy
may be expected beyond 5 iterates. Of the two reestimation
schemes the multiplicative is shown to be the more effective,
taking up 81.9% of all first iterates, while the additive scheme
does better for small frequency modulation extents. This can
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be explained by Proposition 1: the larger the frequency
variation, the larger difference to be expected between true
and estimated frequencies, thus the less likely the residue be a
slow-varying sinusoid. On the average LS-I5 offers 17.8dB
improvement in SRR, covering 79.5% of the improvement
room. With RA these two numbers are 8.1dB and 68.1%.

TM=5 frames, x:AM, y: SRR (dB) TM=5 frames, x:AM, y: SRR (dB)

AM=8 bins, x: TM (frame), y: SRR (dB) AM=8 bins, x: TM (frame), y: SRR (dB)

Figure 5. Results for AM-FM sinusoids

4.4.4.4. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

In this paper we have proposed a reestimation framework for
improving the accuracy of sinusoid modeling. By updating
parameter estimates incorporating information embedded in
the modeling error, we achieve higher accuracy without
expanding the data structure. The framework does not depend
on any specific signal model, analyzer or synthesizer, but
works with any analyzer-synthesizer combo to provide
accuracy boost for arbitrary slow-varying sinusoids. It is
flexible, robust and very easy to implement. By maintaining
the data structure they also preserve component integrity,
avoiding expressing a single sinusoid in multiple parts, which
is common in decomposition-based approximation
techniques such as wavelets and pursuits.

Within the framework we have implemeted an additive
and a multiplicative scheme for calculating the error signal
and updating parameters. Each scheme has its own advantage
and we have shown that they can be easily combined to make
up for each’s disadvantage. The framework, moreover, is
open to further exploration in search of more powerful
reestimation schemes.
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