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ABSTRACT

In the past, artificial bandwidth extension (ABWE) has pri-
marily been investigated to enhance transmitted narrowband
speech signals at the receiving side. State-of-the-art schemes
show improved quality versus narrowband speech; however,
a clear gap to wideband speech is still reported. This is
largely due to the insufficient ABWE performance on frica-
tives, particularly /s/. We asked ourselves to what extent the
speech quality could be improved, if we knew the currently
spoken phoneme. In this paper we present a framework us-
ing phonetic transcriptions as a-priori knowledge besidesthe
speech waveform. Possible applications are high-quality off-
line ABWE of telephone, pilot, or historic speech recordings,
memory efficient narrowband speech synthesis followed by
ABWE, and extension of narrowband telephone databases to
train wideband acoustic models for automatic speech recog-
nition. For the classical conversational telephony applica-
tion, an improved ABWE scheme is also proposed making
use of transcription information only during training.

1. INTRODUCTION

Artificial bandwidth extension usually performs speech en-
hancement by upsampling of narrowband speech (e.g., tele-
phone speech atfs = 8 kHz sampling rate) and estimating
further frequency components of interest (e.g., up to 7 kHz at
fs = 16 kHz). Examples of typical ABWE systems are given
in [1–3]. Often high-frequency whistling and lisping effects
are observed, which are tackled, e.g., in [4, 5]. Especially
fricatives such as /s/, /z/, and partly /f/, /S/, /Z/ are difficult
to estimate given only a narrowband speech signal [6]. A
considerable portion of their energy is located in higher fre-
quency components, while the low-frequency characteristic
can easily be confused among these sounds (e.g., /s/ and /f/).

Some authors have pushed ABWE quality further by
transmitting low rate side information [7]. This is also done
in speech codecs, such as the adaptive multirate wideband
(AMR-WB) codec [8]. It turns out that a few hundred extra
bits per second allow for high-quality wideband speech re-
construction, while only a narrowband (NB) speech signal is
transmitted.

In this paper we show how side information of a different
kind can be exploited in ABWE: We assume the availability
of time-aligned phonetic transcriptions along with the speech
waveform in training only or in trainingand test. Note that
transcriptions can always be produced offline, either manu-
ally by humans or automatically by forced Viterbi alignment,
so in contrast to [7] our approach does not require any (far-
end) availability of wideband (WB) speech at all.
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Figure 1: Block diagram of the baseline ABWE technique

Possible applications of using a-priori known phonetic
transcriptions in ABWE trainingand test are, e.g., offline
enhancement of telephone, pilot, or historic speech record-
ings. Note that Hansen et al. have worked on similar appli-
cations for speech enhancement (i.e., noise reduction) that
exploits phonetic a-priori knowledge [9]. Another applica-
tion where time-aligned transcriptions are naturally available
is speech synthesis. Here our framework allows for memory
efficient speech synthesis corpora, with only NB signals be-
ing synthesized and extended in bandwidth in a second step.
A further application field of transcription-supported ABWE
concerns interactive voice response (IVR) systems in future
WB speech networks. Those IVR systems will (of course)
exploit the full WB speech in order to allow performance-
critical applications, such as dictation or spelling. However,
telephone speech databases used to train the acoustic models
for automatic speech recognition (ASR) in IVR systems his-
torically consist of NB speech. Since they are phonetically
labeled, as is required for ASR training, a telephone speech
database extension can be performed in order to save the con-
siderable effort and cost related to recording new telephone
speech corpora at higher bandwidth. Last but not least, real-
time ABWE employed in conversational telephony can also
take profit from phonetic transcriptions. Although the tran-
scription information is certainly not available online, i.e.,
during ABWE test, we will show that it can be used at least
for training purposes to improve the statistical model.

Our paper is organized as follows: In section 2 we re-
capitulate the baseline ABWE approach working on speech
waveforms only. Section 3 details a transcription-supported
training of ABWE statistical models. Furthermore, a statisti-
cal framework is introduced that exploits phonetic transcrip-
tions along with the NB speech waveform during ABWE
test. As an application example of the proposed framework,
section 4 presents an enhancement of the particularly prob-
lematic phoneme class{/s/,/z/}. Experimental results are
discussed focusing on the typical lisping and high-frequency
whistling effects.
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Figure 2: Baseline estimation of wideband LPC coefficients

2. THE BASELINE ABWE SYSTEM

The high-level baseline ABWE scheme similar to [10] using
only the speech waveform is shown in Fig. 1 [11]. It employs
a hidden Markov model (HMM) as proposed in [1]. Fig. 2
details the estimation of WB linear predictive coding (LPC)
coefficients. A brief overview and some specifics of the sys-
tem are given now: The narrowband (fs = 8 kHz) speech
signalsNB(n′) with sample indexn′ is subject to interpola-
tion yielding the upsampled speech signalsNB(n) ( fs = 16
kHz) with sample indexn. The actual processing of the in-
terpolated speech signal consists of three steps: A wideband
LP (linear prediction) analysis filter, extension of the result-
ing narrowband residual ˜rNB(n) by spectral folding (zeroing
every other sample), and final LP synthesis filtering of the ex-
tended excitation signal ˜rWB(n) using the same coefficients
as the analysis filter. Since there are only modifications in the
upper frequency band (4. . .8 kHz) and the LP analysis and
synthesis filters are exactly inverse, this scheme is transpar-
ent towards the lower band of the resulting estimated wide-
band speech signal ˜sWB(n). In the following we describe
how the estimated wideband LPC coefficient vector ˜aℓ ∈ R

16

in frameℓ is computed from the narrowband speech signal.

2.1 Estimation of Wideband LPC Coefficients

After delay compensation to yield a narrowband speech sig-
nal sNB(n′−D) that is time-aligned to its interpolated ver-
sion at 16 kHz, feature extraction is performed. It operates
with a frame length of 20 ms and a frame shift of 10 ms;
accordingly the wideband LPC coefficients are updated ev-
ery 10 ms. The primary features are 10 autocorrelation co-
efficients, the zero crossing rate, gradient index, normalized
relative frame energy, local kurtosis, and spectral centroid,
as proposed in [10]. A linear discriminant analysis (LDA)
is employed to reduce the dimensionality of the primary fea-
ture vector fromd0=15 tod=5. The resulting feature vector
xℓ ∈ R

d is subject to a statistical model.
Assuming that in frameℓ the HMM is in a certain state

sℓ = i, i ∈ S = {1, . . . ,N}, the observation probability den-
sity function (PDF) p(xℓ|sℓ = i) for the known observation
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ỹUB,ℓφ̃UB(ejΩ′′
)φ̃NB(ejΩ′

)

φ̃WB(ejΩ)

sNB(n′−D)

ãℓ
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Figure 3: Novel estimation of wideband LPC coefficients
exploiting phonetic transcriptionsϕℓ

xℓ is computed from a Gaussian mixture model (GMM) ob-
tained in training. Frame-wise state a-posteriori probabilities
are then recursively computed by combining the pre-trained
state transition probabilities P(sℓ = i|sℓ−1 = j) with the ob-
servation PDFs as follows:

P(sℓ = i|Xℓ) = C ·p(xℓ|sℓ = i)·
N

∑
j=1

P(sℓ = i|sℓ−1 = j) ·P(sℓ−1 = j|Xℓ−1). (1)

Note that the sequence of observations is denoted as
Xℓ = {xℓ,xℓ−1, . . . ,x1} and that factorC normalizes the sum
of the a-posteriori probabilities over all statessℓ to one.

A vector quantizer (VQ) codebook of upper band (UB)

cepstral vectors ˆy
(i)
UB with indexi = 1, . . . ,N obtained during

training is used together with the state a-posteriori probabili-
ties in (1) to perform a minimum mean square error (MMSE)
estimation of the upper frequency band in the cepstral do-
main:

ỹUB,ℓ =
N

∑
i=1

ŷ
(i)
UB ·P(sℓ = i|Xℓ). (2)

This can be converted to the UB power spectrumφ̃UB(ejΩ′′
)

and assembled with the squared periodogram of the lower
bandφ̃NB(ejΩ′

) to the WB power spectrum̃φWB(ejΩ). Note
that the normalized frequenciesΩ′, Ω′′ cover only the lower
and upper band of the wideband signal, respectively. A fi-
nal conversion via the Levinson-Durbin recursion yields the
wideband LPC coefficient vector ˜aℓ.

2.2 Training Process

The training process requires wideband speech data. It
is performed offline according to [10] as follows: As a
first step, UB cepstral coefficients are derived from each
WB speech frame by selective linear prediction (SLP) and
subsequent Levinson-Durbin recursion. LBG training then
yields the VQ codebook that consists ofN cepstral vectors
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ŷ
(i)
UB = E{yUB|sℓ = i} ∈ R

9 representing the upper frequency
band. TheN codebook entries implicitly define the HMM
statessℓ, since each frameℓ is assigned to a certain index
i by vector quantization. In a second step, these classifi-
cation results are used together with frame-wise obtained
primary feature vectors in order to train an LDA matrix as
part of the feature extraction in section 2.1. In a third step,
state probabilities P(s1 = i) and state transition probabilities
P(sℓ = i|sℓ−1 = j) are derived according to [1]. Finally, us-
ing the LDA-transformed feature vectorsxℓ the parameters
of GMM-based observation PDFs p(xℓ|sℓ = i) are trained by
means of the expectation maximization (EM) algorithm: A
scalar weighting factor, a mean vector, and a diagonal co-
variance matrix for everyd-dimensional normal distribution.
For each HMM state, a separately trained GMM ofG = 8
mixtures is used.

3. STATISTICAL FRAMEWORK FOR ABWE
USING PHONETIC TRANSCRIPTIONS

Based on the baseline ABWE system described in section 2,
a statistical framework for ABWE exploiting a-priori known
phonetic transcriptions along with the speech waveform will
be presented in the following. The resulting modifications
concerning ABWE training and test are shown in Fig. 3.
Note that phonetic transcriptions can be used either within
the training process only (section 3.1), or for both training
and test (sections 3.1 and 3.2).

3.1 Training Process Using Transcriptions

Along with the WB speech signals for training, this section
assumes the availability of time-aligned phonetic class labels
ϕℓ ∈ P that are taken from the phonetic class alphabetP of
sizeNϕ ≤N. Given any HMM states∈ S = {1, . . . ,N}, these
phonetic class labels shall be uniquely related by a mapping
function f (s) = ϕ in training. Note that on the other hand,
an HMM states is always uniquely related to an UB cepstral

codebook entry ˆy
(i)
UB with index i, and vice versa, which we

denote bys= i.
The way the HMM states become phoneme-class-

specific in training is that the VQ codebook entries are
trained on speech data of a particular phoneme class. This
is done by means of supervised training (instead of LBG)

ŷ
(i)
UB = E{yUB|ϕ = f (s= i)}, i = 1, . . . ,N, (3)

where the given phoneme classϕ is taken from time-aligned
phonetic class labels. Based on a state assignment cor-
responding to the phoneme-class-specific codebook classes
(3), the rest of the training process is performed in analogy
to section 2.2, i.e., training of the LDA matrix, of the initial
state and state transition probabilities, as well as of the GMM
parameters for the observation PDFs. Note that in principle,
f (s) = ϕ can be a one-to-one mapping (N = Nϕ ), or multiple
states can be assigned to the same phoneme class (N > Nϕ ).
In section 4, we will present application experiments to the
latter case.

3.2 Estimation of Wideband LPC Coefficients Using
Transcriptions

The recursive computation of the state a-posteriori probabil-
ities (1) can be modified to exploit phonetic transcriptionsby

P(sℓ = i|Xℓ,Φℓ) = C ·p(xℓ|sℓ = i) ·P(ϕℓ|sℓ = i)·
N

∑
j=1

P(sℓ = i|sℓ−1 = j) ·P(sℓ−1 = j|Xℓ−1,Φℓ−1), (4)

with Φℓ = {ϕℓ,ϕℓ−1, . . . ,ϕ1} being the sequence of transcrip-
tions. Note that here the chain rule has been applied in the
form of

p(xℓ,ϕℓ|sℓ = i) = p(xℓ|ϕℓ,sℓ = i) ·P(ϕℓ|sℓ = i),

and due to the tight relation between states and phoneme
classes we assumed p(xℓ|ϕℓ,sℓ = i) = p(xℓ|sℓ = i). The term
P(ϕℓ|sℓ = i) in (4) denotes the elements of aphonetic tran-
scriptions matrix, which shows that unlike in training, we no
longer model the dependency of phoneme classϕℓ from state
sℓ by a unique deterministic functionf (sℓ) = ϕℓ. It expresses
the reliability of the transcription process that can be carried
out either manually by human transcriptors or automatically
by forced Viterbi alignment, and can be modeled by

P(ϕℓ|sℓ = i) =

{

1−ε, if f (sℓ) = ϕℓ
ε

Nϕ−1, else,
(5)

where ε denotes a small value and∑
ϕℓ∈P

P(ϕℓ|sℓ = i) = 1.

Please note in (5) the similarity of the (statistically moti-
vated) phonetic transcriptions matrix to the (deterministic)
mappingf (sℓ) = ϕℓ as it was used in training.

MMSE estimation of upper band cepstral coefficients is
finally performed in analogy to (2) under a moderate inter-
frame smoothing constraint as motivated, e.g., in [12]:

√

2
( 10

ln10

)2
· ||ỹUB,ℓ−1− ỹUB,ℓ||2 ≤ 30dB.

4. EXPERIMENTS

Investigations about ABWE recently demonstrated that the
entries of a speaker-independently LBG-trained VQ code-
book obtained from the baseline training process in section
2.2 are insufficient to produce sharp /s/- and /z/-sounds [6].
For these critical phonemes, the LBG-trained codebook en-
tries appear spectrally too flat in the upper frequency band,
which is just a consequence of the data in a codebook class
being represented by its class mean. This produces lisp-
ing effects formingthemajor obstacle for the acceptance of
ABWE.

4.1 Simulation Setup

We performed artificial speech bandwidth extension experi-
ments based on the US SpeechDat-Car database [13] in order
to investigate the performance on the critical fricative class
{/s/,/z/} that was found to be responsible for the typical
lisping problem [6]. The required WB speech data for train-
ing purposes was taken from six male and six female speak-
ers. Each of them provided two speech sessions. The result-
ing 24 speech sessions were excluded from the ABWE test.
For test purposes a 10% subset of the 404 sessions of the
remaining 202 speakers was utilized.

4.1.1 First experiment

The first ABWE experiment is just performed according to
the baseline scheme of section 2 withN = 24 states.
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4.1.2 Second experiment

The ABWE test of the second experiment still works accord-
ing to section 2.1, whereas the training process is already
based on section 3.1 making use of phonetic transcriptions.
The VQ codebook consists ofN = 24 entries that have been
trained as follows: We define two phoneme classes. The first
phoneme classϕ = {/s/,/z/} comprises all sounds except
phonemes /s/, /z/. It is sufficiently represented by 16 HMM
statess∈ {1, . . . ,16} as shown in [10]. For simplicity, the
respective codebook entries are LBG-trained on all available
data. The second phoneme class{/s/,/z/} turned out to be suf-
ficiently represented by the remaining 8 HMM states. The
training of the 8 codebook entries was found to be advan-
tageously conducted by performing a 64 entry LBG train-
ing on /s/ frames only, and keeping only the 8sharpestcen-
troids. They are determined as those codebook entries with
the largest cepstral distance to the mean of the 64 found pre-
liminary centroids, with the important constraint that the0th
cepstral coefficient must be larger than the mean 0th coeffi-
cient of the preliminary centroids. These 8 codebook entries
are used to commonly represent the fricatives /s/ and /z/ in a
sharp fashion. Both can be jointly treated in the upper fre-
quency band, since their discriminating characteristics (voic-
ing properties) are mostly contained in the lower band [6].

4.1.3 Third experiment

The training process of the third experiment is exactly the
same as of the second one, however, the ABWE test is per-
formed now according to section 3.2, i.e., also including tran-
scription information. For the statistical framework in (4),
the elements of the size 2×24 phonetic transcriptions matrix

P(ϕℓ|sℓ = i) =

{

1−P(i), if ϕℓ = {/s/,/z/}
P(i), if ϕℓ = {/s/,/z/}

(6)

are given by

P(i) =

{

ε, 1≤ i ≤ 16
1−ε, 17≤ i ≤ 24.

The valueε is assumed as 10−4. Note that this experiment
represents a two-class-problem only, i.e.,Nϕ = 2 < N = 24.
Equation (6) is therefore a simplified variant of (5).

4.2 Experimental Results

In order to get a rough impression about the ABWE per-
formance of the three experiments, Fig. 4 exemplarily il-
lustrates the respective spectrograms for the utterance“less
poisonous”. Note that the critical fricatives /s/ and /z/ are
marked on the top of the figure. The upper graph 4(a)
shows the original NB speech spectrogram, whereas the
lower graph 4(e) shows the perfect WB speech spectrogram
representing the upper bound of performance. As expected,
the middle graphs 4(b)-(d) depicting the spectrograms of the
three ABWE experiments lie somewhere in between. Note
the improvement of 4(c) vs. 4(b) at the first instance of
/s/. Apart from that, both spectrograms appear quite sim-
ilar. A significant improvement can be reported for graph
4(d), which is – for all phoneme instances /s/ and /z/ – very
close to graph 4(e). Due to the a-priori known transcription
in ABWE training and test, a more precise spectral represen-
tation of the upper frequency band is achieved. Hence, the
typical lisping effect disappears.

Figure 4: Spectrograms from top to bottom: (a) 8 kHz orig-
inal speech, (b) baseline ABWE speech (1st experiment) (c)
ABWE speech using transcriptions in training only (2nd ex-
periment), (d) ABWE speech using transcriptions in training
and test (3rd experiment), (e) 16 kHz original speech; the
utterance spoken was“less poisonous”.

Fig. 5 shows for all three ABWE experiments time aver-
ages of the state a-posteriori probabilities P(sℓ = i|Xℓ) and
P(sℓ = i|Xℓ,Φℓ), respectively, measured on fricatives. The
HMM statessℓ = i of graph 5(b) and 5(c) are phoneme-class-
specific according to section 4.1.2 (i.e., including classes 17
to 24 that produce sharp /s/- and /z/-sounds), whereas those
of graph 5(a) are not (see section 4.1.1). Nevertheless, there
are obviously states in graph 5(a) that clearly represent frica-
tives, e.g.,i = 7, 8, 20 or 23. A serious problem is that these
states do not sufficiently discriminate between the two sharp-
sounding phonemes /s/, /z/ and the other fricatives /S/, /Z/,
and /f/. Lisping effects are the consequence. Having a look at
graph 5(b), just statesℓ = 4 contributes to the aforementioned
lisping problem. In return, a high-frequency whistling arti-
fact is introduced by the additional statesi = 17, . . . ,24 that
are actually intended for the phoneme class{/s/,/z/}. How-
ever, all fricatives more or less contribute to these states, not
only /s/ and /z/. Again phonemes /S/, /Z/ and /f/ produce the
main confusion: Although they usually exhibit only moder-
ate UB energy, a reconstruction via the last 8 states rather
produces a whistling sound. Finally, as expected graph 5(c)
reveals a perfect discrimination between the phoneme class
{/s/,/z/} (last 8 states) and the other sounds (first 16 states).
This significant improvement leads to the reduction of both
effects lisping and whistling.

5. CONCLUSIONS

We have presented a statistical framework for artificial band-
width extension (ABWE) that governs the recursive compu-
tation of state a-posteriori probabilities exploiting a-priori
known phonetic transcriptions along with the narrowband
speech waveform. The typical lisping problem of ABWE
systems has been reduced by adding{/s/,/z/}-class-specific
states through a transcription-supported ABWE training.
This already leads to an audible improvement of online
ABWE in conversational telephony. However, in some
cases slight high-frequency whistling is introduced in return.
Therefore, high quality ABWE was presented using phonetic
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(b) Results of the 2nd experiment according to section 4.1.2
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(c) Results of the 3rd experiment according to section 4.1.3

Figure 5: Experimental results: Time-averaged a-posteriori
probabilities measured on fricatives in American English

transcription as a-priori knowledge during trainingand test.
This has been discussed by experimental results and exem-
plarily confirmed by spectrograms. Informal listening tests
revealed a significant improvement of speech quality. Speech
samples will be presented at the conference.
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