Conference paper Open Access

Adoption Dynamics and Societal Impact of AI Systems in Complex Networks

Fernandes, Pedro M.; Santos, Francisco C.; Lopes, Manuel


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4133505</identifier>
  <creators>
    <creator>
      <creatorName>Fernandes, Pedro M.</creatorName>
      <givenName>Pedro M.</givenName>
      <familyName>Fernandes</familyName>
      <affiliation>INESC-ID and Instituto Superior Técnico, Univ. de Lisboa Lisbon, Portugal</affiliation>
    </creator>
    <creator>
      <creatorName>Santos, Francisco C.</creatorName>
      <givenName>Francisco C.</givenName>
      <familyName>Santos</familyName>
      <affiliation>INESC-ID and Instituto Superior Técnico, Univ. de Lisboa Lisbon, Portugal</affiliation>
    </creator>
    <creator>
      <creatorName>Lopes, Manuel</creatorName>
      <givenName>Manuel</givenName>
      <familyName>Lopes</familyName>
      <affiliation>INESC-ID and Instituto Superior Técnico, Univ. de Lisboa Lisbon, Portugal</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Adoption Dynamics and Societal Impact of AI Systems in Complex Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>AI ethics</subject>
    <subject>Game theoretical analysis</subject>
    <subject>AI regulation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-02-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4133505</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3375627.3375847</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/iv4xr-project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;We propose a game-theoretical model to simulate the dynamics of AI adoption in adaptive networks. This formalism allows us to understand the impact of the adoption of AI systems for society as a whole, addressing some of the concerns on the need for regulation. Using this model we study the adoption of AI systems, the distri- bution of the different types of AI (from selfish to utilitarian), the appearance of clusters of specific AI types, and the impact on the fitness of each individual. We suggest that the entangled evolution of individual strategy and network structure constitutes a key mech- anism for the sustainability of utilitarian and human-conscious AI. Differently, in the absence of rewiring, a minority of the population can easily foster the adoption of selfish AI and gains a benefit at the expense of the remaining majority.&lt;/p&gt;</description>
  </descriptions>
</resource>
53
126
views
downloads
Views 53
Downloads 126
Data volume 99.1 MB
Unique views 52
Unique downloads 122

Share

Cite as