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ABSTRACT
Support Vector Machines (SVM) are playing an increasing role for
detection problems in various engineering domains, notably in sta-
tistical signal processing, pattern recognition, image analysis, and
communication systems. In this paper, we present a new method
for optimizing Support Vector Machines for classification problems.
An implicit reformulation of the optimization problem is proposed.
The bias term is added to the primal problem formulation, which
leads to eliminating the equality constraint. In order to deal with
large data set problems, we propose a decomposition method, Se-
quential Maximum Gradient Optimization (SMGO), that relies on
the selection of the working set via the search of the highest abso-
lute values of the gradient. Furthermore, considering the quadratic
nature of the dual problem, the optimum step-size is analytically
determined. Moreover the solution, the gradient and the objective
function are recursively calculated. The Gram matrix has not to be
stored. SMGO is easy to implement and able to perform on large
data sets.

1. INTRODUCTION

The last few years have seen the rise of Support Vector Ma-
chines (SVM) as powerful tools in machine learning for clas-
sification and regression problems [3] and they have much
success in detection problems [14] [6]. The complexity of
SVM only depends on the number of observations which is
equal to the sample size, thus the need for developing effi-
cient learning algorithms to solve the optimization problem
for large data sets.
Recently, fast iterative algorithms have been suggested.
Among them, decomposition methods, initially proposed by
Joachims [8], put a subset of data into a working set and
solves the Quadratic Programming (QP) problem by optimiz-
ing the corresponding Lagrange multipliers while keeping
the other unchanged. In this way, a large QP problem is de-
composed into a series of smaller QP problems, thus making
it possible to train a SVM on large data sets. Using an idea
similar to decomposition, Chunking [23], solves a QP prob-
lem on a subset of data. Chunking trains a SVM using a set of
training data and only keeps the support vectors into the sub-
set. These steps are repeated until all training data are used
and they all satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions. Collobert et al [4] presented SVM-Torch, a decompo-
sition algorithm similar to the one proposed by Joachims [8].
Among all decomposition algorithms, Sequential Minimum
Optimization (SMO) introduced by Platt [15] takes decom-
position methods to the extreme: the working set is only
composed of two observations for which the optimization
process is performed analytically at every iteration. Man-
gasarian and his colleagues [11] [9] proposed several varia-
tions of standard support vector machines by modifying the

objective function, together with several very efficient train-
ing algorithms. For more detailed survey, see [2]. Another
way to deal with large scale data sets is to use the geometric
properties of SVM. As in [16], they developed learning algo-
rithms based on reduced convex hull. Their algorithms have
been shown to be efficient and accurate.
In this paper, we present a new learning algorithm in the
framework of the decomposition methods. We propose a
reorganization of Platt’s algorithm SMO, using Joachims
heuristic. Inspired by Mangasarian et al [7] [10], we add
the bias term in the primal optimization problem. There-
fore, we combine all these ideas and we extend our previ-
ous work [12] to propose a new learning algorithm for solv-
ing detection problems: Sequential Maximum Gradient Op-
timization (SMGO). In SMGO, the bias term added to the ob-
jective function turns out to eliminate the equality constraint,
consequently the number of Lagrange multipliers to be mod-
ified at each iteration is no more lower bounded by 2. The
working set is selected following an efficient heuristic that
relies on the search for the maximum absolute values of the
gradient ensuring feasible directions. The optimal step-size
of the gradient algorithm is calculated analytically The solu-
tion, the gradient and the objective function are recursively
computed. All these steps, coupled with the previous heuris-
tic, ensure a fast and efficient training algorithm and are new
within the context of SVM training.
We begin this paper with a brief review of the basic tech-
nique used for implementing Support Vector Machines for
detection problems. Then we give an overview of SMGO by
introducing in details its different steps. Section 4 presents
the experimental results and we finally conclude with some
perspectives.

2. SUPPORT VECTOR DETECTION

The goal of this section is to give a brief review of the fun-
damentals of Support Vector in the non linear case. Given a
training data set (x1,y1), · · · ,(xN ,yN), xi ∈X ⊂ Rp,yi ∈
{−1,+1}. The problem is to find a hyperplane in Φ(X )
defined by:

〈
w,Φ(x)

〉
+b = 0 (1)

Assuming that, without loss of generality, Φ(x) belongs to a
finite dimensional space, so the dot product

〈
w,Φ(x)

〉
can

be written wTΦ(x), and assuming that the data are linearly
separable in Φ(X ), this hyperplane must verify

sign(wTΦ(xi)+b) = yi,∀i

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1705



In the case of SVM, the separating hyperplane is defined by:

w,b : min
i

∣∣wT Φ(xi)+b
∣∣ = 1 (2)

It is easy to prove that the distance from the closest training
point Φ(xi) to the hyperplane defined by (2) is 1/ ‖w ‖. So
we aim to maximize the margin given by 1/ ‖w ‖. Allowing
some relaxation to deal with overlapping data distributions,
the optimization problem is then:

minimize
w,ξ

1
2 ‖w‖2 +C

N
∑

i=1
ξi

subject to
{

yi
(
wT Φ(xi)+b

)≥ 1−ξi
ξi ≥ 0, i = 1, ....,N

(3)

Here, w is a vector in Φ(X ), and Φ(x) maps the input x to a
vector in Φ(X ). C > 0 is a regularization constant that con-
trols the trade-off between the empirical loss and the margin
width, the slack variables ξi represent the empirical loss as-
sociated with xi and b is calculated using the Karush-Kuhn-
Tucker (KKT) conditions.
The hyperplane given by (1) can be written as:

(
w
b

)T (
Φ(x)
1

)
= 0 (4)

The hyperplanes defined by (1) and (4) are strictly equivalent.
Consequently, within the context of SVM, and as in [7] [10],
we introduce the term b2/2 in the objective function, so the
primal SVM problem (3) becomes:

minimize
w,ξ ,b

1
2 ‖w‖2 + b2

2 +C
N
∑

i=1
ξi

subject to
{

yi
(
wT Φ(xi)+b

)≥ 1−ξi
ξi ≥ 0, i = 1, ....,N

(5)

By introducing the Lagrange multipliers and minimizing the
Lagrangian with respect to the primal variables, the problem
(5) can be written as follows:

max
α

W (α) =− 1
2

N
∑

i, j=1
yiy jαiα jk(xi,x j)+

N
∑

i=1
αi

− 1
2

N
∑

i, j=1
yiy jαiα j

subject to αi ∈ [0,C]

(6)

where k(xi,x j) = Φ(xi)T Φ(x j). The introduction of b2/2
turns out that:
• the equality constraint in the dual problem, i.e., ∑i αiyi =

0, gets eliminated
• the bias term is given by: b = ∑i αiyi

In matrix form, this problem can be written:

max
α

W (α) = 1
2 αTHα +αT 1N

subject to α ∈ [0,C]N
(7)

where Hi j = −yiy j(k(xi,x j) + 1) and 1N is the N dimen-
sional vector composed of 1.

3. ALGORITHM DESCRIPTION

In this section, we give an overview of our algorithm. Our
main idea to iteratively solve problem (7) is to look for a
working set composed of the q highest absolute values of the
gradient that also define feasible directions. Once the work-
ing set is defined, we proceed on a optimal step gradient algo-
rithm. Considering the quadratic nature of the optimization
problem, the optimal step-size is analytically calculated. It
is then clipped so that the updated solution α satisfies the
inequality constraint.

3.1 Selecting a possible working set
All the previous work [8] [15] have searched for a direction
u in such a way that uTg is maximum, where g is the gra-
dient of the objective function. In the case of a working set
of size 2, u has only two non-null components equal to ±1.
However, in our case we do not have to satisfy any equality
constraint as the result of our formulation of the quadratic op-
timization problem (7), so we are not restricted to the choice
of u defined previously. Consequently, the direction move
could be collinear to the partial gradient i.e. the gradient
calculated only with respect to the working set. Accordingly,
we define the working set by a set of indices IWS given by:

IWS =
{

i : |gi| ∈
{

q largest absolute values
of gn, n = 1, ...N

}}
(8)

But an update of α in the direction of the partial gradient
can be allowed if and only if the partial gradient defines a
feasible direction. This will be ensured if it is not located on
the boundaries of the domain [0,C]N when the partial gra-
dient leads us outside the domain. Consequently, the search
for the working set is now defined by:

IWS =





i : |gi| ∈





q largest absolute values
of gn, n = 1, ...N; with
αi < C if gi > 0 and
αi > 0 if gi < 0









(9)

The partial gradient g̃ that will be our direction move is de-
fined by:

g̃i =
{

gi if i ∈ IWS
0 elsewhere (10)

In some cases, we cannot obtain a working set of size q since
the number of indices verifying (9) is smaller than q. The
size of the working set, in this case, is reduced to the number
of indices verifying (9).

3.2 Calculation of the optimal step-size
The update of the solution is:

α ← α +λopt g̃ (11)

where λopt is the optimum step-size that verifies:

λopt = argmax
λ

(W (α +λ g̃)) (12)

In the quadratic case, it is easy to prove that λopt is given by:

λopt =
g̃Tg̃
g̃THg̃

(13)
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Note that, to calculate λopt , we do not need to compute the
whole matrix H. We only need to determine the submatrix of
H of size (q× q) associated to the elements of the working
set. Moreover, H has not to be stored.
Before any modification, we need to verify that the updated
point remains feasible (it must satisfy all the constraints):

0≤ αi +λ g̃i ≤C, i ∈ IWS

if g̃i > 0 −αi
g̃i
≤ λ ≤ C−αi

g̃i

if g̃i < 0 C−αi
g̃i

≤ λ ≤ αi
g̃i

(14)

from which we can deduce:

λ ≤min
(

min
i

(
C−αi

g̃i
),min

i
(

αi

g̃i
)
)

(15)

λ ≥max
(

max
i

(
C−αi

g̃i
),max

i
(
−αi

g̃i
),0

)
(16)

If λ does not verify equation (15) then

λ > min
(

min
i

(
C−αi

g̃i
),min

i
(

αi

g̃i
)
)
⇒

λopt ←−min
(

min
i

(
C−αi

g̃i
),min

i
(

αi

g̃i
)
)

(17)

likewise if λ does not verify (16) then

λ < max
(

max
i

(
C−αi

g̃i
),max

i
(
−αi

g̃i
),0

)
⇒

λopt ←−max
(

max
i

(
C−αi

g̃i
),max

i
(
−αi

g̃i
),0

)
(18)

3.3 Calculation of the increments of the objective func-
tion and gradient
The increment of the objective function can be calculated by:

∆W = W (α +λopt g̃)−W (α)

In matrix form ∆W can be written as:

∆W = λopt g̃T Hα +
1
2

λ 2
opt g̃

T Hg̃+λopt g̃T1N (19)

Taking into account that g̃ has N−q null components, we do
not have to calculate the whole matrix H to evaluate ∆W .
The gradient of the objective function W is given by:

g = Hα +1N

An update of the gradient is also necessary:

∆g = λoptHg̃ (20)

Here again, the update of the gradient does not exhibit the
calculation of H, but only the q¿ N rows corresponding to
the working set.

3.4 Initialization
The initial values of the Lagrange multipliers are, as usual,
set to 0 (feasible solution) so we have:

α = 0⇒ g = 1N , W (0) = 0 (21)

3.5 Algorithm
The SMGO algorithm can be resumed as follows:
1. Initialization, equation (21)
2. Direction search, g̃, equations (9), (10)
3. Calculation of the optimal step-size λopt , equations (13),

(15), (16) (17) and (18)
4. Update of the solution, α ←− α +λopt g̃
5. Update of the gradient g←− g+∆g, where ∆g is given

by (20)
6. Update of the objective function W ←−W + ∆W where

∆W is given by (19)
7. Test for convergence, if not return to step 2
Because the constraints are satisfied by construction, our
stopping criterion is based on the increment of the objective
function. It has been shown satisfactory.
It is easy to show that the bias term is calculated from the
annulation of the derivative of the primal objective function
with respect to b:

b = ∑
i

αiyi (22)

4. EXPERIMENTAL RESULTS

We compare now our SMGO algorithm with an implemen-
tation of SVM-Light. In a first step, we are only concerned
with training time comparison, so we do not use any test set.
However, in a second step, test data are used to compare the
performance of SMGO with SVM-Light, here used as a ref-
erence. We consider different sizes of the working set. Both
algorithms are written in MATLAB and the kernel used is
gaussian k(xi,x j) = exp(−‖xi−x j‖2/2σ2). The data sets
used are real word applications1 and simulated data. The pa-
rameters used σ and C are the ones used in the literature.
The first data set is the Spam emails aiming to classify emails
between spam or non-spam. The size N = 4601 and 57 at-
tributes are used, σ = 5 and C = 10.

Working Set size q SMGO SVM-Light
1 198.73 -
2 143.56 200.66
3 99.94 199.016
4 86.38 152.79
6 167.75 141.83

Table 1: Training time (s) for Spam emails database

Working Set size q SMGO SVM-Light
1 575.21 -
2 837.40 1633.96
3 1143.70 1636.54
4 718.51 2282.71
6 535.78 2906.02

Table 2: Training time (s) for gaussian simulated data set

The second data set used is artificially generated and
consists of two 10-dimensional gaussian distributions with

1archive.ics.uci.edu/ml/datasets
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Working Set size q SMGO SVM-Light
1 171.54 -
2 300.75 850.60
3 350.64 825.88
4 402.16 1131.67
6 350.65 1287.34

Table 3: Training time (s) for Forest

Working Set size q SMGO SVM-Light
1 1.715 -
2 1.874 7.102
3 3.448 6.362
4 3.567 3.519
6 2.782 2.811

Table 4: Training time (s) for Diabetes database

Working Set size q SMGO SVM-Light
1 0.621 -
2 0.478 1.029
3 0.509 1.042
4 0.463 0.681
6 0.437 0.587

Table 5: Training time (s) for Spectf database

q 2 3 4 6
Spam 0.0002 0.0004 0.0006 0.0016

Simulated 0.0012 0.0012 0.0012 0.0015
Forest 0.0024 0.0011 0.0014 0.0028

Diabetes 0.0150 0.0177 0.0174 0.0185
Spectf 0.0039 0.0019 0.0023 0.0032

Table 6: RMSE for different test data sets

identity covariance matrices and mean vectors equal to 010

and 110 respectively. We consider here N = 40000 observa-
tions. The gaussian kernel parameter σ is 3 and C = 10.
Forest2 dataset has been used for large scale SVM train-
ing (e.g.,Collobert et al., 2002). Following [5], we aim
at separating class 2 from the other classes. N = 20000,
10 attributes, σ = 100 and C = 1000. For the Diabetes3

dataset, the diagnostic, binary-valued variable investigated,
is taken whether the patient shows signs of diabetes accord-
ing to World Health Organization criteria. N = 763, 8 at-
tributes, σ = 8 and C = 10. We use also the dataset Spectf
heart4, the data recorded using cardiac Single Proton Emis-
sion Computed Tomography (SPECT) images. Each patient
is classified into one of two categories: normal and abnor-
mal. (N = 187, p = 44, σ = 10 and C = 50).
A close look to the training time between SMGO and SVM-
Light (Table 1, 2, 3, 4, 5) on all the experiments run shows
that the gain in training time generally increases when the
data set size increases.

2http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
3archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
4http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart

In order to evaluate the performance degradation, we
partitioned randomly the previous data sets in training
and test data sets and we evaluated the Root Mean Square
Error (RMSE)5 on test data, for each experiment, between
our results and the solution obtained with SVM-Light for
different working set sizes (Table 6). The comparison has
been done between SMGO and SVMLight. For q = 1,
RMSE was not calculated since SVM-Light does not allow
such a working set size. Note that, even if we obtain a very
similar solution between SMGO and SVM-Light, we are not
solving the same optimization problem.

5. CONCLUSION

In this paper, we have introduced a new and fast training
algorithm for support vector detection. This algorithm inge-
niously exploits the inequality constraint and the quadratic
nature of the objective function. At each iteration, all the
computations are done analytically and the solution, gradient
and objective function are recursively determined. SMGO
is easy to implement and does not require the storage of the
Gram matrix.
Our objective was not to improve the performance of the
detector obtained but to propose a faster training algorithm
(also able to deal with large data sets) presenting no perfor-
mance degradation compared to usual SVM. The interest of
SMGO results from the formulation of the primal problem.
This formulation allows the suppression of the equality
constraint usually appearing in the dual formulation of the
optimization problem. It is important to note that the primal
is not the same as usual. Therefore, the solution obtained
using the classical formulation of Support Vector Classifiers
and our formulation might be different.
A comparison between SMGO and SVM-Light has been
performed on different data sets. An advantage of our algo-
rithm is that the minimum working set size equals 1, which,
coupled with an analytical expression of the bias term,
allows us to extend SMGO to an online version. The results
obtained have shown that SMGO generally advantageously
compares with SVM-Light. We have experienced that our
algorithm is faster and faster compared to SVM-Light since
data set size increases, so it is well adapted to large scale
problems.
In our future work, we aim to extend SMGO to an online ver-
sion and use kernel cache to improve training time execution.
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