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4 Umeå University, Sweden

5 Fondazione Bruno Kessler, Italy

Abstract. Modern interactive software, such as computer games, employ com-
plex user interfaces. Although these user interfaces make the games attractive and
powerful, unfortunately they also make them extremely difficult to test. Not only
do we have to deal with their functional complexity, but also the fine grained inter-
activity of their user interface blows up their interaction space, so that traditional
automated testing techniques have trouble handling it. An agent-based testing ap-
proach offers an alternative solution: agents’ goal driven planning, adaptivity, and
reasoning ability can provide an extra edge towards effective navigation in com-
plex interaction space. This paper presents aplib, a Java library for programming
intelligent test agents, featuring novel tactical programming as an abstract way
to exert control over agents’ underlying reasoning-based behavior. This type of
control is suitable for programming testing tasks. Aplib is implemented in such a
way to provide the fluency of a Domain Specific Language (DSL). Its embedded
DSL approach also means that aplib programmers will get all the advantages that
Java programmers get: rich language features and a whole array of development
tools.

Keywords: automated game testing ·AI for automated testing · intelligent agents
for testing · agents tactical programming · intelligent agent programming

1 Introduction

With the advances of technologies, computer games have become increasingly more
interactive and complex. Modern computer games improve realism and user experience
by allowing users to have fine grained control/interactions. A downside of this develop-
ment is that it becomes increasingly difficult to test computer games. For example, to
test that a computer game would maintain the correctness invariant of a certain family
of states, the tester will first need to operate the game to bring it to at least one of such
states. This often requires a long series of fine grained interactions with the game. Only
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Fig. 1. A 3D game called Lab Recruits where aplib were deployed aid testing.

then the tester can check if the said invariant does hold in that state. Such a test is hard,
error-prone, and fragile to automate. Consequently, many game developers still resort
to expensive manual play testing. Considering that the game industry is worth over 100
billions USD, speeding up testing by effectively automating manual testing tasks is a
need that cannot be ignored.

As indicated above, a common manual expensive test related task is to bring the
game under test to a certain state of interest (goal state), either because we want to
check if the state is correct, or because we need to do a specific action on this state
that is required for the given test scenario. In principle this task is a search problem, for
which solutions exist. However, in the context of computer games the problem is chal-
lenging. A game often employs randomness and it often consists of many entities that
interact with each other and with the user. Some interactions might be cooperative while
others can be adversarial. These and other factors lead to a vast and fine grained interac-
tion space which is hard to deal with for the existing automated testing techniques such
as search based [29, 20], model based [15, 43], or symbolic [4, 42]. The key to handle
such a space, we believe, is to have an approach that enables the programming of do-
main reasoning to express which parts of the interaction space of a particular game are
relevant to consider, and likewise what kinds of plans (for reaching given goal states)
are needed. This allows the underlying test engine to focus its search on the parts of the
interaction and plan spaces that semantically matter. We propose to base such a solution
on a multi-agent approach since autonomous distributed planning and reasoning based
interactions with environments are already first class features.

Contribution. This paper presents aplib6, a Java library for programming intelligent
agents suitable for carrying out complex testing tasks. They can be used in conjunction
with Java testing frameworks such as JUnit, e.g. to collect and manage test verdicts. Fig-
ure 1 shows a 3D game we use as a pilot where aplib was used to automate testing (we
will also use it later as a running example). Aplib features BDI (Belief-Desire-Intention
[23]) agents and adds a novel layer of tactical programming that provides an abstract
way to exert control on agents behavior. Declarative reasoning rules express when ac-

6 ”Agent Programming Library”, https://iv4xr-project.github.io/aplib/.



tions are allowed to execute. Although in theory just using reasoning is enough to find
a solution (a plan that would solve the given goal state) if given infinite time, such an
approach is not likely to be performant enough. For testing, this matters as no devel-
opers would want to wait for hours for their test to complete. The tactical layer allows
developers to program an imperative control structure over the underlying reasoning-
based behavior, allowing them to have greater control over the search process. So-called
tactics can be defined to enable agents to strategically choose and prioritize their short
term actions and plans, whereas longer term strategies are expressed as so-called goal
structures, specifying how a goal can be realized by chosing, prioritizing, sequencing,
or repeating a set of subgoals.

While the concept of a hierarchical goal is not new, e.g. it can be solved by Hierar-
chical Task Networks (HTN) and Behavior Trees (BT), or can be encoded directly as
BDI reasoning rules [9], aplib allows it to be expressed in terms of imperative program-
ming idioms such as SEQ and REPEAT, which are more intuitive for programming
control. The underlying reasoning based behavior remains declarative. Our tactical pro-
gramming approach is more similar to tactical programming in interactive theorem
proving, used by proof engineers to script proof search [40, 12, 22]. The use of this
style in BDI agents and for solving testing problems is as far as we know new.

As opposed to dedicated agent programming languages [37, 41] aplib offers a Do-
main Specific Language (DSL) embedded in Java. This means that aplib programmers
will program in Java, but they will get a set of APIs that give the fluent appearance of
a DSL. In principle, having a native programming language for writing tests is a huge
benefit, but only if the language is rich enough and has enough tool and community
support. Otherwise it is a risk that most companies will be unwilling to take. On the
other hand, using an embedded DSL means that the programmers have direct access to
all the benefit the host language, in this case Java: its expressiveness (OO, λ-expression
etc.), static typing, rich libraries, and wealth of development tools.

Paper structure. Section 2 first introduces the concept of testing tasks; these are
the tasks that we want to automate. Section 3 explains the basic concepts of aplib agents
and shows examples of how to create an agent with aplib and how to write some simple
actions. Section 4 introduces the concept of goal structures, to express complex test
scenarios, and our basic constructs for tactical programming. The section also explains
aplib’s ‘deliberation cycle’, which necessarily deviates from BDI’s standard due to its
tactical programming. Large scale case studies are still future work. However, Section
5 will briefly discuss our experience so far. Section 6 discusses related work, and finally
Section 7 concludes and mentions some future work.

2 Testing Task

This section will introduce what we mean by a ‘testing task’, and what ‘automating’ it
means. The typical testing task that we will consider has the form:

φ︸︷︷︸
situation

⇒ ψ︸︷︷︸
invariant

(1)

where φ is a state predicate characterizing a situation and ψ is a state predicate that
is expected to hold on all instances of the situation φ (that is, on all states satisfying



φ). We call ψ an invariant, which is the term used by Ernst et al. [16] to refer to a
predicate that is expected to hold at a certain control location in a program, e.g. when a
program enters its loop, or when it exits; φ would then be a predicate that characterizes
the control location of interest. This concept generalizes the well known pre- and post-
conditions. E.g. if φ captures the exit of a method m, the invariant ψ then describes m’s
post-condition.

Since game testing typically has to be done in the so-called blackbox setup [3] where
we abstract away from the source code (because it would otherwise be too complex),
and hence also away from concepts such as programs’ control location, we further gen-
eralize Ernst et al. by allowing φ to describe a family of game states that are semantically
meaningful for human users; we call this a situation. For example φ could characterize
the situation where a certain interactable game element, e.g. a switch, is visible, and ψ

could then express the expectation that the switch should be in its ‘off’ state.
Since φ can potentially describe a very large, even infinite, set, the specification

φ⇒ ψ is tested by sampling a finite number of states, and then checking whether the
invariant ψ holds in these states. Obviously such tests are only relevant when applied
on sample states that satisfy the situation φ. Getting the game into a relevant state for
testing φ ⇒ ψ is a non-trivial task for a computer. Since a game typically starts in
specific initial states, it first needs to be played to move it to any specific other state.
Consequently, when we want to automate the testing of φ⇒ψ, the hard part is typically
not in checking its invariant part, but in finding relevant states to test the implication.

Playing a game can be seen as the execution of a sequence of actions, e.g. moving
up or down, interacting with some in-game entity, etc. The set of available actions might
be different on different states. We will call a sequence of actions a plan. A solution is a
plan that, when executed, would drive the game under test to a state relevant for φ⇒ ψ.
In manual testing, a human is employed to search for such a solution. There are tools
that can be used to record a script that can execute the plan and replay it whenever we
need to re-test the corresponding situation. A major challenge, however, with script-
based test automation is the manual effort required for maintaining the scripts when
they break [2]. If the game designers introduce even a small change in a the game
layout (e.g. an in-game door is moved to a different position), which happens very often
during the development, a recorded script would typically break. Moreover, games are
non-deterministic due to all sorts of random behavior (e.g. random moves by computer
controlled enemies, or randomness due to timing effect). This makes such automation
scripts for games even more fragile.

By ‘automated testing’ of φ⇒ ψ we mean to replace the human effort by letting
an agent search for solutions. This is a search problem: the space of possible plans is
searched to find at least one that would solve φ. We can define the robustness of an
automated test as how well it can cope with the non-determinism of the system under
test. Since agents are typically reactive to the environment, agent-based test automation
can thus be expected to be robust; this will be discussed later in Section 4.3.

Testing tasks can be generalized to test ‘scenarios’:

φ0 ; ... ; φk−1︸ ︷︷ ︸
scenario

⇒ ψ︸︷︷︸
invariant

(2)



Each φi is a state predicate describing a situation. The sequence φ0; ... ;φk−1 describes
a scenario where executions of the game under test passes through the states satisfy-
ing each φi in the same chronological order as the sequence. In the state where φk−1 is
satisfied, the invariant ψ is expected to hold. For example, if developers employ UML
Use Cases, these can be converted to the above form: each flow in a use case can be
translated to a scenario, and its post condition to ψ. Testing a scenario is not fundamen-
tally harder than testing a situation, since the next situation φi+1 in the scenario defines
the same kind of search problem as we had in situation testing where φi describes the
starting states for the search.

3 Aplib Agency

This section will introduce our agent programming framework aplib and show how to
use it to automate testing tasks.

Preliminary: Java functions. Since Java 8, functions can be conveniently formu-
lated using so-called λ-expressions. E.g. the Java expression:

x→ x+1

constructs a nameless function that takes one parameter, x, and returns the value of x+1.
Unlike in a pure functional language like Haskell, Java functions can be either pure (has
no side effect) or impure/effectful. An effectful function of type C→D takes an object
u:C and returns some object v:D, and may also alter the state of u.

Importantly, a λ-expression can be passed as a parameter. Since as a function a λ-
expression defines behavior, passing it as a parameter to a method or object essentially
allows us to inject new behavior to the method/object. This allows us to extend the
behavior of an agent without having to introduce a subclass. While the latter is the
traditional OO way to extend behavior, it would clutter the code base if we plan to create
e.g. many variations of the same agent. Our use of λ-expressions to inject behavior is
essentially a generalization of the well-known Strategy Design Pattern [21].

3.1 Agent, Belief, and Goal

Fig. 2. Typical deployment of aplib agents. Ai are agents, controlling the game under test through
an interface called Environment. A communication node allows connected agents to send mes-
sages to each other.

Figure 2 illustrates the typical way aplib agents are deployed. As common with
software agents, aplib agents are intended to be used in conjunction with an external



environment (in our case, this is the game under test) which is assumed to run indepen-
dently. In aplib, the term ‘Environment’ refers, however, to a Java interface between the
agents and the game. Aplib agents do not directly access nor control the game. Having
the Environment in between keeps aplib neutral with respect to the technology used by
the game under test. Developers do have to provide an implementation of this interface
for each game what they want to test with aplib. This indeed requires effort, but it is a
one-off investment, after which the developers would benefit from aplib’s automation
for the rest of the development process, as well as that of future versions of the game.
The minimum functionality that an Environment should provide is a function to let an
agent obtain relevant information about the current game state visible to it, and to send
a command to some in-game entity that it is allowed to control.

Multiple agents can be deployed if the game is multi-player. In such a setup, agents
may want to work together. A group of agents that wish to collaborate can register to a
‘communication node’ (see Fig. 2). This enables them to send messages to each other
(singlecast, broadcast, or role-based multicast).

BDI with goal structure. As typical in BDI (Belief-Desire-Intent) agency, an aplib
agent has a concept of belief, desire, and intent. An agent’s state reflects its belief. It
contains information on the current state of the game under test. Such information is a
‘belief’ because it may not be entirely factual. E.g. the game may only be willing to pass
current information of in-game entities in the close vicinity of the agent. So, the agent’s
information on far away entities might over time become obsolete. The agent can be
given a goal structure, defining its desire. Unlike flat goal-based structures used e.g. in
2APL [9] and GOAL [24], in this paper we employ a richly structured goal structure,
with different nodes expressing different ways a goal could be achieved through its
subgoals; more on this will be discussed Section 4. Abstractly, an aplib agent is a tuple:

A = (s,E,Π,β)

where s is an object representing A’s state and E is its environment.
Π is a goal structure, e.g. it can be a set of goals that have to be achieved sequentially.

Each goal is a pair, let’s denote it with gL99T ∗, where g is the goal itself and T is
a ‘tactic’ intended to achieve g. In BDI terms, T reflects intention. When the agent
decides to work on a goal gL99T ∗, it will commit to it: it will apply T repeatedly over
multiple execution cycles until g is achieved, or the agent has used up its ‘budget’ for g.

The β in the tuple represents the agent’s computing budget. Budget is used to con-
trol how long the agent should persist on pursuing its current goal. Executing a tactic
consumes some budget. So, this is only possible if β>0. Consequently, a goal will au-
tomatically fail when β reaches 0. Budget plays an important role when dealing with
a goal structure with multiple goals as the agent will have to decide how to divide the
budget over different goals. This will be discussed later in Section 4.

Example. Figure 3 shows a scene in a game called Lab Recruits7. Imagine that we
want to test that the door (white circled) works (it can be opened). Two buttons (red
circled) are present in the room. In a correct implementation, the door can be opened by
activating the button closest to the door. A player (yellow circled) can activate a button

7 https://github.com/iv4xr-project/labrecruits



Fig. 3. A setup where we have to test that a closet door (circled white) can be opened.

by moving close to it and interacting with it. Suppose the door is identified by door1 and
its corresponding button button1. The testing task above can be specified as follows:

button1 is active︸ ︷︷ ︸
situation

⇒ door1 is open︸ ︷︷ ︸
invariant

(3)

Figure 4 shows how we create a test agent named Smith to perform the aforemen-
tioned testing task. First, lines 1-3 show the relevant part of the environment the agent
will use to interface with the Lab Recruits game; it shows the primitive commands
available to the agent. The method interact(i, j) will cause an in-game character with id
i (this would be the character controlled by the agent) to interact with another in-game
entity with id j (e.g. a button). The method also returns a new ’Observation’, contain-
ing information on the new state of game-entities in the visible range of i. The method
moveToward(i, p,q) will cause the character i to move towards a position q, given that
p is i’s current position. Simply teleporting to q is not allowed in most games. Instead,
the method will only move i some small distance towards q (so, it may take multiple
update cycles for a to actually reach q). The method also returns a new observation.

Line 5 creates an empty agent. Lines 11-13 configure it: line 11 attaches a fresh state
to the agent; then, assuming labrecruitsEnv is an instance of LabRecruitsEnv (defined in
lines 1-3), line 12 hooks this environment to the agent. Line 13 assigns a goal named Π

to the agent. The goal is defined in lines 6-10, stating that the desired situation the agent
should establish is one where the in-game button1 is active (line 7). Line 9 associates a
tactic named activateButton1Tac to this goal, which the agent will use to achieve the
latter. Line 10 lifts the defined goal to become a goal structure. More precisely, line 6
creates a ’test-goal’. An ordinary goal, created using a constructor named goal rather
than testgoal, simply formulates desired states to be in. A test-goal additionally speci-
fies an invariant (line 8). It formulates a testing task as discussed in Section 2. E.g. lines
7 and 8 formulate the testing task in (3). When the goal part is achieved, the invariant
will be tested on the current agent state. If this returns true, the test passes, otherwise
it fails. Its automation is provided by the tactic activateButton1Tac that should specify
some strategy to go towards the button and activate it.

3.2 Action (Elementary Tactic)

A tactic is made of ‘actions’, composed hierarchically to define a goal-achieving strat-
egy. Such composition will be discussed in Section 4.1. In the simple case though, a



1class LabRecruitsEnv extends Environment {
2Observat ion i n t e r a c t ( S t r i n g i d 1 , S t r i n g i d 2 ) . . .
3Observat ion moveToward ( S t r i n g id , Vec3 p , Vec3 q ) . . .
4}
5var Smith = new TestAgent ( ) ;
6var Π = testgoal ( ” g ” , Smith )
7. toSolve ( s → i s A c t i v e ( s . g e t E n t i t y ( ” but ton1 ” ) ) )
8. i n v a r i a n t ( s → isOpen ( s . g e t E n t i t y ( ” door1 ” ) ) )
9. t a c t i c ( ac t i va teBu t t on 1Tac )
10. l i f t ( ) ;
11Smith . w i thS ta te (new AgentState ( ) )
12. wi thEnvironment ( l ab rec ru i t sEnv )
13. setGoal (Π )
14. budget (200)

Fig. 4. Creating an agent named Smith to test the Lab Recruits game. The code is in Java, since
Aplib is a DSL embedded in Java. The notation x→e in line 7 is Java lambda expression defining
a function, in this case a predicate defining the goal.

tactic is made of just a single action. An action is an effectful and guarded function
over the agent’s state. The example below shows the syntax for defining an action.

var α = action(”id”) . do2( f )︸ ︷︷ ︸
behavior

. on (q)︸ ︷︷ ︸
guard

(4)

This statement8 defines an action with “id” as its id, and binds the action to the
Java variable α. The f is a function defining the behavior that will be invoked when the
action α is executed. This function is effectful and may change the agent state. The q, is
a pure function, called the ‘guard’ of the action, specifying when the action is eligible
for execution. Notice that the pair f ,q can be seen as expressing a reasoning rule q→ f .

The guard q can be a predicate or a query. More precisely, let Σ be the type of the
agent state and R the type of query results. We allow q to be a function of type Σ→R.
Whereas a predicate would inspect a state s:Σ and simply return a true or a false, a
query inspects s if it contains some object r satisfying a certain property. E.g. q might
be checking if s contains a closed door. If such a door can be found, q returns it, else it
returns null. This gives more information than just a simple true or false.

More precisely, the action α is executable on a state s if it is both control and guard-
enabled on s. For now we can ignore control-enabledness. The action is guard-enabled
on s when q(s) returns some non-null r. The behavior function f has the type Σ→R→V

8 Note that action, do2, and on are not Java keywords. They are just methods. However, they
also implement the Fluent Interface design pattern [19] commonly used in embedded Domain
Specific Languages (DSLs) to ‘trick’ the syntax restriction of the host language to allow meth-
ods to be called in a sequence as if they form a sentence to improve the DSL’s fluency.



1var approachButton1 = action ( ” approachButton1 ” ) .
2. do2 ( ( AgentState s ) → ( E n t i t y but ton1 ) → {
3var o = s.env.moveTowards ( s. id , s.pos i t i on , but ton1.p o s i t i o n ) ;
4s.markObservation ( o ) ;
5return s }
6)
7. on ( ( AgentState s ) → {
8var e = s.g e t E n t i t y ( ” but ton1 ” ) ;
9i f ( e==nul l ) return nul l ;
10i f ( d is tance ( s.pos i t i on , e.p o s i t i o n ) < 0.01) return nul l ;
11return e ;
12) ;

Fig. 5. An action that would move an agent closer to button1. Notice that we again use λ-
expressions (lines 3 and 7) to conveniently introduce functions without having to create a class.

for some type V . When the action α is executed on s, it invokes f (s)(r)9. The result
v = f (s)(r), if it is not null, will then be checked if it achieves the agent’s current goal.

For example, Figure 5 shows an action that can help agent Smith from Fig. 4. In the
game Lab Recruits, to interact with a button a player character needs to stand close to
the button. Although in Fig. 3 the character seems to stand close to button1, it is not
close enough. The tactic in Fig. 5, when invoked, will move the character closer to the
button (but will not interact with it, yet). It may take several invocations to move the
character close enough to the button. The action’s guard specifies that the action is only
enabled if button1 exists (line 9) in the agent’s belief. and furthermore its distance to
the agent is ≥0.01 unit (line 10). The behavior part of the action, line 3, will then move
the agent some small distance towards the button. Line 4 will incorporate the returned
new observation (of the game state) into the agent’s state.

Reasoning. Most of agent reasoning is carried out by actions’ guards, since they
are the ones that inspect the agent’s state to decide which actions are executable. The
reader may notice that the guard in the example in Fig. 5 is imperatively formulated,
which is to be expected since aplib’s host language, Java, is an imperative programming
language. However, aplib also has a Prolog backend (using tuprolog [13]) to facilitate a
declarative style of state query.

Figure 6 shows an example. To use Prolog-style queries, the agent’s state needs to
extend a class called StateWithProlog. It will then inherit an instance of a tuprolog
engine to which we can add facts and inference rules, and then pose queries over these.
Imagine a level in Lab Recruits where we have multiple doors and buttons. Some but-
tons may crank multiple doors when toggled. Suppose a test agent wants to get to a
state where two doors, door1 and door2, are open. The example shows the definition of

9 This scheme of using r essentially simulates unification a la pgrules in 2APL. Unification plays
an important role in 2APL. The action in (4) corresponds to pgrule q(r)? | f (r) The parameter
s (the agent’s state/belief) is kept implicit in pgrules. In 2APL this action is executed through
Prolog, where q is a Prolog query and r is obtained through unification with the fact base
representing the agent’s state.



1class AgentState extends StateWithPro log {
2. . . addRules (
3clause ( openDoors ( ” B ” , ” D1 ” , ” D2 ” ) )
4. IMPby (
5or ( and ( c lose ( ” D1 ” ) , connected ( ” B ” , ” D1 ” ) ) ,
6and ( open ( ” D1 ” ) , unConnected ( ” B ” , ” D1 ” ) ,
7c lose ( ” D2 ” ) , connected ( ” B ” , ” D2 ” ) ) ) )
8}
9action ( ” open doors 1and2 ” )
10. do2 ( ( AgentState s ) →
11( Resul t r ) → {
12var b = s.g e t E n t i t y ( s t r i n g v a l ( r .get ( ” B ” ) ) ) ;
13i f ( d is tance ( s.pos i t i on , b.p o s i t i o n ) > 0.01)
14o = s.env.moveTowards ( s. id , s.pos i t i on , b.p o s i t i o n ) ;
15else o = s . env . i n t e r a c t ( s. id , b. i d ) ;
16s . markObservation ( o ) ;
17return b })
18. on ( ( AgentState s ) → s.query ( openDoors ( ” B” , door1 , door2 ) ) )

Fig. 6. An example action whose guard, line 18, is formulated declaratively in the Prolog style.

an action named “open doors 1and2′′ that will do this. Note that after opening one of
these doors, the agent should be careful when trying to open the second. It needs to find
a button that indeed opens the second door, but without closing the first one again. The
reasoning needed to handle this is formulated as a Prolog rule called openDoors defined
in lines 3-7. With the help of this rule, the guard for the action ”open doors 1and2” can
now be formulated as a Prolog query openDoors(B,door1,door2), which in aplib is ex-
pressed as in line 18. The predicate is true if door1 is closed and B is a button connected
to it (so, toggling the button would crank the door). Else, if door1 is open, B should be
connected to door2, but not to door1 (so, toggling it will not close door1 again). So, as-
suming a solution exists, invoking the action above multiple times will first open door1,
unless it is already open, and then door2. Notice that the guard is declarative, as it only
characterizes the properties that a right button should have; it does not spell out how we
should iterate over all the buttons in the agent’s belief to check it.

4 Structured Goals and Tactics

A goal can be very hard for an agent to achieve/solve directly. For example imagine a
level in the game Lab Recruits, similar to Fig. 1, where we have to test some feature
F located in some specific room. Let isInteractedF be the goal representing the agent
is at F and manages to interact with it (and hence test it). To achieve this the agent
will first need to reach the room where F is. To access this room a door D needs to
be opened first. The door can be closed, in which case the agent first needs to find a
specific button B that opens it. If the agent does not know all these steps, then directly
solving isInteractedF will be very difficult.



We can help the agent by providing intermediate goals that it needs to solve first.
We can formulate this as a ’goal structure’ as the one below:

SEQ(FIRSTof( isOpenD,SEQ(isActivatedB, isOpenD)),
isInteractedF)

where isOpenD and isActivatedB are intermediate goals. SEQ and FIRSTof are exam-
ples of so-called goal combinators explained below.

In aplib a composite goal is called a goal structure. It is a tree with goals as the
leaves, and goal-combinators as nodes. The goals at the leaves are ordinary goals or
test-goals, and hence they all have tactics associated to each. The combinators do not
have their own tactics. Instead, they are used to provide a high level control on the order
or importance of the underlying goals. Available combinators are as follows; let G and
G1, ...,Gn be goal structures:

– If gL99T∗ is a goal with the tactic T associated to it, g.lift() turns it to a goal
structure consisting of the goal as its only leaf. T is implicitly attached to this leaf.

– SEQ(G1, ...,Gn) is a goal structure that is achieved by achieving all the subgoals
G1, ...,Gn, and in that order. This is useful when Gn is hard to achieve; so G1, ...,Gn−1
act as helpful intermediate goals to guide the agent. Goal structures of this form also
naturally express test scenarios as in (2).

– H = FIRSTof(G1, ...,Gn) is a goal structure where, given H to achieve, the agent
will first try to achieve G1. If this fails, it tries G2, and so on until there is one goal
Gi that is achieved. If none is achieved, H is considered as failed.

– H =REPEAT G is a goal structure where, given H to achieve, the agent will pursue
G. If after sometime G fails, e.g. because it runs out of budget, it will be tried again.
Fresh budget will be allocated for G, taken from what remains of the agent’s total
budget. This is iterated until G is achieved, or until H’s budget runs out.

Dynamic Subgoals. Rather than providing a whole goal structure to an agent,
sometimes it might be better to let the agent dynamically introduce or cancel sub-
goals. For example imagine an agent A which initially is given a goal structure Π =
SEQ(isOpenD, inRoomR). As the agent works on the first subgoal, isOpenD imagine
that it discovers that the door D is closed, and hence the subgoal cannot be reached
before another subgoal is solved (i.e. activate the button that opens the door).

Rather than pre-programming how to handle this in Π we can let the tactic of
isOpenD to make this decision instead. Since a tactic has access to the agent’s state, it
can inspect this state. Based on what it discovers it may then decide to insert a new sub-
goal, let’s call it isActivatedB, that will cause the agent to first find the button B and ac-
tivate it in order to open D. The agent can do this by invoking addBefore(isActivatedB),
that will then change Π to:

SEQ(REPEAT(SEQ(isActivatedB, isOpenD)), inRoomR)

The REPEAT construct will cause the agent to move back to isActivatedB upon failing
isOpenD. The sequence SEQ(isActivatedB, isOpenD) will then be repeatedly attempted
until it succeeds. The number of attempts can be controlled by assigning budget to the
REPEAT construct (budgeting will be discussed below).



Budgeting. Since a goal structure can introduce multiple goals, they will be compet-
ing for the agent’s attention. By default, aplib agents use the blind commitment policy
[31] where an agent will commit to its current goal until it is achieved. However, it is
possible to exert finer control on the agent’s commitment through a simple but powerful
budgeting mechanism.

When the agent was created, we can give it a starting computing budget β0 (else it is
assumed to be ∞). Let Π be the agent’s root goal structure. For each sub-structure G in Π

we can specify G.bmax: the maximum budget G will get. Else, the agent conservatively
assumes G.bmax = ∞. By specifying bmax we control how much the agent should
commit to a particular goal structure. This limit can be specified at the goal level (the
leaves of Π), if the programmer wants to micro-manage the agent’s commitment, or
higher in the hierarchy of Π to strategically control it.

Once it runs, the agent will only work on a single goal at a time. The goal g it
works on is called the current goal. Every ancestor of a current g is also current. For
every goal structure G, let βG denote the remaining budget for G. At the beginning,
βΠ = β0. When a goal or goal structure G in Π becomes current, budget is allocated
to it as follows. When G becomes current, its parent either becomes current as well, or
it is already current (e.g. the root Π is always current). Ancestors H that are already
current keeps their βH unchanged. Then, the budget for G is allocated by setting βG
to min(G.bmax,βparent(G)), after we recursively determine βparent(G). This budgeting
scheme is safe: the budget of a goal structure never exceeds that of its parent.

When working on a goal g, any work the agent does will consume some budget, say
δ. This will be deducted from βg and from the budget of its ancestors. If βg becomes
≤0, the agent aborts g. It must then find another goal from Π.

4.1 Tactic

Rather than using a single action, Aplib provides a more powerful means to achieve
a goal, namely tactic. A tactic is a hierarchical composition of actions. Methods used
to compose them are also called combinators. Figure 7 shows an example of a tactic,
composed with a combinator called FIRSTof. Structurally, a tactic is a tree with actions
as leaves and tactic-combinators as nodes. The actions are the ones that do the actual
work. Furthermore, recall that the actions also have their own guards, controlling their
enabledness. The combinators are used to exert a higher level control over the actions,
e.g. sequencing or choosing between them. This higher level control supersedes guard-
level control10. The following tactic combinators11 are provided; let T1, ...,Tn be tactics:

10 While it is true that we can encode all control in action guards, this would not be an abstract
way of programming tactical control and would ultimately result in error prone code.

11 Earlier, in Section 1, we mentioned a relation with theorem provers. LCF-family theorem
provers like HOL and Isabelle also have a concept of ’tactic’, which basically is a function
that constructs a proof of a given conjecture [40, 12, 22]. Since the solving proof is usually not
known upfront, similar tactic combinators are used to control a search over the possible proof
space. E.g. in HOL we have THEN, and ORLSE. These correspond to our SEQ and FIRSTof.
HOL’s REPEAT has no direct tactical counterpart in aplib, though aplib’s deliberation cycles
implicitly introduce a top-level repetition —this will be elaborated in Section 4.2.



1 var ac t i va teBu t t on 1Tac = FIRSTof (
2 action ( ” ac t i va teBu t ton1 ” ) . do2 ( . . ) . on ( . . ) . l i f t ( )
3 . approachButton1 . l i f t ( )
4 . action ( ” exp lore ” ) . do2 ( . . ) . l i f t ( )
5 )

Fig. 7. The tactic for agent Smith in Fig. 4, composed from three other tactics. The first (its full
code is not shown) is an action to activate button1 if it is close enough to the agent. Otherwise,
the action approachButton1 (defined in Fig. 5) will move the agent towards the button, if it is
visible to the agent (see the action’s guard). Else, FIRSTof falls back to the last tactic that will
explore the area around the agent to search the button. Note that without using a combinator
like FIRSTof the control flow will have to be explicitly programmed into the actions’ guards,
resulting in a less abstract agent program, not to mention that the control flow would then be
implicit, which makes the code harder to understand and more error prone.

1. If α is an action, T = α.lift() is a tactic. Executing this tactic on an agent state s
means executing α on s, which is only possible if α is enabled on s (if its guard
results a non-null value when queried on s).

2. T = SEQ(T1, ...,Tn) is a tactic. When invoked, T will execute the whole sequence
T1, ..., Tn.

3. T = ANYof(T1, ...,Tn) is a tactic that randomly chooses one of enabled Ti’s and
executes it. A SEQ tactic is enabled if its first sub-tactic is enabled. For other com-
binators, it is enabled if one of its sub-tactic is enabled.

4. T = FIRSTof(T1, ..,Tn) is a tactic. It is used to express priority over a set of tactics
if more than one of them could be enabled. When invoked, T will invoke the first
enabled Ti from the sequence T1, ..,Tn.

4.2 Aplib deliberation cycle

Consider a goal gL99T ∗. When this goal becomes current, recall that the agent will then
repeatedly execute T until g is achieved (or until its budget is exhausted). Aplib agents
execute their tactics in cycles. In BDI agency these are called deliberation cycles [32,
10, 38]: in each cycle, an agent senses its environment, reasons which action to do, and
then performs this action. To make itself responsive to changes in the environment, an
agent only executes one action per cycle. So, if the environment’s state changes at the
next cycle, a different action can be chosen to respond to the change. However, if T
contains a sub-tactic T ′ of the form SEQ(T1, ..,Tn) things become more complicated.
If T ′ is selected, the agent has to execute the whole sequence12 which will take least n
cycles, before it can repeat the whole T again. This makes the execution flow of a tactic
non-trivial. We therefore have to deviate from the standard BDI deliberation [38].

Imagine an agent A = (s,E,Π,β). At the start, A inspects its goal structure Π to
determine which goal gL99T ∗ in Π it should pursue, and calculates how much of the
budget β should be allocated for achieving g (βg). A will then repeatedly apply T over
multiple cycles until g is achieved, or βg is exhausted. At every cycle, A does the fol-
lowing:

12 Breaking off in the middle can be expressed using a combination of FIRSTof and SEQ.



1. Sensing. The agent asks the Environment to provide a fresh state information.
2. Reasoning. The agent determines which actions α in T are executable on the current

state s. This is the case if α is guard-enabled on s and furthermore also control-
enabled. The definition of latter is somewhat complicated. Let us explain it with
an example instead. Suppose T = ANYof(α0,SEQ(α1,α2),α3). The first time T is
considered for execution, α0, α1 and α3 becomes control-enabled, but not α2. If α0
turns out to be not guard-enabled, and α1,α3 are, only the latter two are executable.
Suppose α1 is chosen for execution. At the next cycle only α2 is control-enabled.
If it is also guard-enabled it can be executed, else it remains control-enabled for the
next cycle. After α2 is executed, the execution of the whole T is completed, and it
can be repeated again.
If no action is executable, the agent will sleep until the next cycle. Note that since
the game under test runs autonomously, it may in the mean time move to a new
state, and hence in the next cycle some actions may become enabled.

3. Execution and resolution. Let α be the selected action. It is then executed. If its
result v is non-null, it is considered as a candidate solution to be checked against
the current goal g. If v achieves g (so, g is solved), the agent inspects the remaining
goals in Π to decide the next one to handle. The whole cycle is repeated, but with
the new goal. If there is no goal left, then the agent is done. If g is not achieved, it
is maintained and the whole cycle is repeated.

4.3 Test Robustness

Let us now explain more concretely why aplib test automation is more robust. Recall
the tactic activateButton1Tac (Fig. 7) to activate button1. Notice that it uses the tactic
approachButton1.lift() (defined in Fig. 5) to approach the button first in case the agent
is not standing next to it. Notice that the location is not hard-wired in this tactic, but
instead queried from the button itself. Let us also replace the call to moveTowards in
line 3 in Fig. 5 with navigateTo. This will cause the agent to use aplib’s 3D-space path
finding to guide itself towards the given location. If the game designer now moves the
button elsewhere, e.g. to swap its position with the far button in Fig. 3, the tactic will
still work, as long as there is a path that reaches the button. The tactic approachButton1
requires however that the button is already in the agent’s belief, which would not be the
case if the developer moves it to a new position that is initially not visible to the agent.
Fortunately the enclosing tactic activateButton1Tac can deal with that, by falling back
to the ‘explore’ tactic to search the button first.

If the level contains some random fire hazard, we can replace approachButton1 in
activateButton1Tac with a more adaptive variant e.g.:

FIRSTof(avoidHazardTac, approachButton1.lift())

If the agent now detects fire when it on its way to button1, it will first try to evade the fire
before resuming its navigation to button1. Importantly, since the tactic executability is
re-checked at every deliberation cycle, the agent will be able to timely invoke the above
re-planning.



5 Proof of Concept

Lab Recruits
C# scripts 64 files, 3524 sloc
animation control 12 files, 2763 lines

Implementation of Environment
game-side 393 sloc C#
Java-side 1056 sloc Java

Support
Domain specific tactics 505 sloc Java
General support (world representation, pathfinding) 1250 sloc Java
Utilities 240 sloc Java

Tests with aplib
(game logic) button & door 74 sloc Java (28 sloc actual test-code)
(level test) state transitions (3) 117 sloc Java (61 sloc actual test-code)
(level test) simple reachability 69 sloc Java (19 sloc actual test-code)
(level test) complex reachability 98 sloc Java (46 sloc actual test-code)

Fig. 8. Some statistics of the experiment with the Lab Recruits game.

We conducted a pilot on the previously mentioned Lab Recruits game13, as a proof
of concept, and to get a preliminary idea on the effort to integrate aplib into the devel-
opment cycle and to write tests. Lab Recruits is developed by a group of students using
an established game development framework called Unity 3D. It consists of about 3500
lines of C# scripts. In Unity, not all dynamics are programmed in such scripts. E.g.
animation is designed with a separate tool, from which meta files (≈ 2700 lines) are
generated and compiled to behavior.

To extend their entertainment, most games are replayable on different instances of
the playing world, so-called levels. Levels have unique layout, monsters and items drop,
etc. The logic (game rules) is however the same over all levels. Levels are often metic-
ulously hand crafted (it is an art that computers have not mastered yet), hence requiring
significant human effort. A level in Lab Recruits represents a laboratory building, con-
sisting of rooms, in one or multiple floors, populated by in-game objects, such as tables,
and chairs. Some of them are interactable, such as buttons. Some of them represent haz-
ard, such as, fire. In addition to testing the correctness of the general game logic, note
that every newly crafted level also requires testing, e.g. to make sure that in-game enti-
ties which are necessary for completing the level are indeed reachable by the player.

Integration Effort As remarked in Section 3.1 to use aplib the developers need to
first provide an implementation of the interface Environment for their game. For Lab
Recruits this amount to about 1400 lines of Java and C# —see Fig. 8. While this gives
test agents basic control over the game, an important lesson we learned is that this is
not enough. More abstract ways to control and navigate through the game are necessary.
These are provided as a library of tactics (≈ 500 lines) and support classes e.g. to do
path-planning on a 3D surface (≈ 1200 lines). Such tactics are quite game-specific, but
much of the path-planning functionality is generic and will in the future be migrated to
aplib’s standard library.

13 https://github.com/iv4xr-project/labrecruits



While the amount of integration code is relatively substantial compared to the size
of Lab Recruits itself, it does not mean that if we extend Lab Recruits with new game
objects and new logic the integration code will grow as much. Moreover, the same
integration can be used to test as many new levels as we have, no matter how large or
complex they are.

Testing with aplib We used aplib agents to test Lab Recruits’ general logic and a num-
ber of sample levels —an overview is given in Fig. 8. To test the general logic it is
sufficient to make a minimalistic level exposing the aspects of the logic that we want to
test. E.g. a button in Lab Recruits should open/close doors bound to it (and only those
doors). This proves that if they are bound correctly, they will also interact correctly. This
can be tested with a mini level with one button and several doors. The corresponding
testing task takes 74 lines of code, though only a third of them describes the task itself.

A typical testing tasks when testing a level is to verify that every entity (or at least,
the key entities) has the right behavior, e.g. that a button would open the right door (in
other words, whether the level binds the correct doors to the button). In our experiment,
testing three such buttons takes about 120 lines of code, but only about half of them
actually describe the task.

Another typical testing task is to check if key entities in a level are actually reach-
able. In the simple case, an entity is reachable through an unobstructed path in the level.
However, note that the entity might not be visible from the agent’s initial position. So,
solving such a task also involves searching the level. On the other hand, this contributes
to the robustness of the test: if the developers change the level’s layout or move the
entity elsewhere, the test code will not break as long as the entity remains reachable. In
our example, such a test takes about 70 lines. The code is reusable, irrespective the size
and complexity of the level, as long as the target entity is reachable in the above sense.

In a more complex situation, reaching an entity requires opening a series of doors
that block the path to it. To verify the entity’s reachability, we simply translate the
needed sequence of essential buttons (that should be toggled to open the guarding doors)
into subgoals. For a setup that involves three buttons and three doors it takes about 100
lines of test code; only about half of them actually describe the task. The approach can
be smarter (e.g. if we can eliminate the need to add subgoals), but this is not the goal of
the current pilot, and left as future work.

6 Related Work

Software agents have been employed in various domains, e.g. computer games, health
care, and control systems [26, 30, 27]. With aplib we have another usecase, namely auto-
mated testing. Using agents for software testing has actually been attempted before [36,
33, 5, 35]. However, these works use agents to test services or web applications, which
are software types that can already be handled by non-agent techniques such as model
based [43] or search based [20, 1] testing, whereas we argued that high interactivity of
computer games poses a different level of challenge for automated testing.

To program agents, without having to do everything from scratch, we can either use
an agent ‘framework’, which essentially provides a library, or we use a dedicated agent



programming language. Examples of agent frameworks are JADE [6] and aplib for Java,
HLogo [7] for Haskell, and PROFETA [18] for Python. Examples of dedicated agent
languages are JASON [8], 2APL [9], GOAL [24], JADEL [25], and SARL [39]. HLogo
is an agent framework that is specialized for developing an agent-based simulation. On
the other hand, JADE and aplib are generic agent frameworks that can be connected to
any environment. Aplib is light weight compared to JADE. E.g. the latter supports dis-
tributed agents and FIPA compliance which aplib does not have. JADE does not natively
offers BDI agency, though BDI agency, e.g. as offered by JADEL, can be implemented
on top of JADE. In contrast, aplib and PROFETA are natively BDI agent frameworks.

Among the dedicated agent programming languages, some are dedicated for pro-
gramming BDI agents. The good thing is that they offer Prolog-style declarative pro-
gramming. On the down side e.g. available data types are restricted (e.g. no support for
collection and polymorphism), which is a serious hinderance if we are to use them for
large projects. One with a very rich set of language features (collection, polymorphism,
OO, lambda expression) is SARL, though it is non-BDI. PROFETA and aplib are some-
where in between. Both are BDI DSLs, but they are embedded DSLs rather than a native
language as SARL. To improve its fluency as a DSL, aplib makes heavy use of design
patterns such as Fluent Interface [19] and Strategy Pattern [21]. PROFETA and aplib’s
host languages are full of features (Python and Java, respectively), that would give the
strength of SARL that agent languages like JASON and GOAL cannot offer.

Aplib’s distinguishing feature compared to other implementations of BDI agency
(e.g. JACK, JASON, 2APL, GOAL, JADEL, PROFETA) is its tactical programming of
plans (through tactics) and goals (through goal structures). An agent is essentially set
of actions. The BDI architecture does not traditionally impose a rigid control structure
on these actions, hence allowing agents to react adaptively to changing environment.
However, there are also goals that require certain actions to be carried out in a certain
order over multiple deliberation cycles. Or, when given a hard goal to achieve, the agent
might need to try different strategies, each would need to be given enough commitment
by the agent, and conversely it should be possible to abort it so that another strategy can
be tried. All these imply that tactics and strategies require some form of control struc-
tures, although not as rigid as in e.g. procedures. All the aforementioned BDI imple-
mentations do not provide control structures beyond intra-action control structures. This
shortcoming was already observed by [17], stating domains like autonomous vehicles
need agents with tactical ability. They went even further, stating that Agent Oriented
Software Engineering (AOSE) methodologies in general do not provide a sufficiently
rich representation of goal control structures. While inter-actions and inter-goals con-
trol structures can be encoded through pushing and popping of beliefs or goals into
the agent’s state, such an approach would clutter the programs and error prone. An ex-
isting solution for tactical programming for agents is to use the Tactics Development
extension [17] of the Prometheus agent development methodology [34]. This exten-
sion allows tactics to be graphically modelled, and template implementations in JACK
can be generated from the models. In contrast, Aplib provides the features directly at
the programming level. It provides the additional control structures suitable for tactical
programming over the usual rule-based style programming of BDI agents. When pro-
gramming test agents, having an option to exert control helps the tester to narrow the



agents’ search space which may benefit their performance, which is important when we
start to accumulate a large number of tests.

Let us also mention the agent language IndiGolog [11] from the Golog-family [28].
The original Golog [28] allows a model of an environment to be expressed in a mix
of imperative statements and ’situation calculus’ axioms (comparable to Hoare triples).
A Golog agent solves goals off-line, using the model. The obtained plan (sequence
of actions) are then executed on the environment. Such an approach is less suitable
for testing a game due to the latter’s non-determinism. In contrast, IndiGolog offers
a mix of reactive programming and model-based off-line planning. If a test-goal can
be broken into subgoals where some are robust against the game’s non-determinism,
off-line planning can be employed to handle the latter. Although testing is not a main
use-case of IndiGolog nor Golog, their idea actually resembles a well known testing
approach called Model Based Testing (MBT) [15] where Labelled Transition Systems
(LTS) or Extended Finite State Machines (EFSMs) are often used as models. In MBT,
a model also defines correctness (e.g. when the model specifies b to happen after a,
the implementation is expected to behave in the same way), in addition to providing
guidance on how to reach a given goal state as in Golog. Aplib currently has no MBT
capability; this is future work. Extending aplib with MBT would benefit from aplib’s
tactical layer, which as pointed out in Section 4.3 improves agents’ robustness against
non-determinism, which in terms of MBT would allow more goals to be solved off line.
Since requiring developers to provide detailed models is unlikely to scale up, future
research should be focused on model learning [43], e.g. to learn the parts of the model
that only serve to provide goal solving guidance, so that developers only need to focus
on the parts that capture the game’s correctness.

7 Conclusion & Future Work

We have presented aplib, a BDI agent programming framework featuring multi agency
and novel tactical programming and strategic goal-level programming. We choose to
offer aplib as a Domain Specific Language (DSL) embedded in Java, hence making the
framework very expressive. Despite the decreased fluency, we believe this embedded
DSL approach to be better suited for large scale programming of agents, while avoiding
the high expense and long term risk of maintaining a dedicated agent programming
language.

With the above features aplib would be a good choice to be used as a framework
to program test agents for testing highly interactive software such as computer games.
Our experience so far with the Lab Recruits case study (Fig.1) shows that even a simple
test agent that can navigate within a closed terrain already introduces automation that
is previously not possible. Larger and more thorough case studies are still future work.
We would also like to explore the use of emotion modelling framework such as FAtiMA
[14] alongside aplib agents to allow us to test user experience (e.g. whether the game
becomes too boring too quickly), which is an aspect of a great concern in the game
industry.

While in many cases relying on reasoning-based intelligence is enough, there are
also cases where this is not. Recently we have seen rapid advances in learning-based



AI. As future work we seek to extend aplib to let programmers hook learning algorithms
to their agents to teach the agents to make the right choices, at least in some situation,
as an alternative when rule-based reasoning becomes too complicated (e.g. when it
involves recognizing visual or audio patterns).
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