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abstract: The mean age at which parents give birth is an important
notion in demography, ecology, and evolution, where it is used as a
measure of generation time. A standard way to quantify it is to com-
pute the mean age of the parents of all offspring produced by a cohort,
and the resulting measure is thought to represent the mean age at
which a typical parent produces offspring. In this note, I explain why
this interpretation is problematic. I also introduce a new measure of
the mean age at reproduction and show that it can be very different
from the mean age of parents of offspring of a cohort. In particular,
the mean age of parents of offspring of a cohort systematically over-
estimates the mean age at reproduction and can even be greater than
the expected life span of parents.

Keywords: cohort generation time, age-structured population, mean
age at reproduction, mean age of mothers, Crump-Mode-Jagers
processes.

Introduction

The mean age at reproduction is a central notion in the study
of the evolution of reproductive timing and of the slow-fast
continuum. It also plays an important role in demography.
However, as with many descriptors of populations, it is not
clear how it should be defined—let alone quantified in prac-
tice. A standard measure of it is the mean age of parents of
offspring produced by a cohort, also frequently referred to
as the cohort generation time. To obtain it, consider all off-
spring produced by a cohort of newborns over its lifetime;
for each of these offspring, record the age that their parents
(or mother in the case of a female-based model) had when
the offspring was born; finally, take the average of these ages.

It is straightforward to compute this quantity from com-
plete census data. In practice, however, it is usually estimated
from life tables using the following formula:

m1 p

Ð 1∞
0 tm(t)ℓ(t)dtÐ 1∞
0 m(t)ℓ(t)dt

: ð1Þ

In this expression, the survivorship function ℓ gives the
probability that an individual of the chosen cohort reaches
age t, and the age-specific fertility m represents its rate of off-
spring production in such a way that, assuming the individ-
ual remains alive between ages a and b, the expected number
of offspring it will produce in that interval of time is

Ð b
am(t)dt.

There is also a discrete-time version of formula (1):

m1 p

P1∞
tp1tℓtmtP1∞
tp1ℓtmt

, ð2Þ

where ℓt is the probability that an individual survives to age t
and mt is the expected number of offspring produced at age t
by individuals that reach that age.

Formulas (1) and (2) go back a long way and are ubiqui-
tous in the literature. They have been popularized by classic
references such as Keyfitz (1968) and Coale (1972) in de-
mography and Charlesworth (1994) and Caswell (2001)
in biology. They can also be found in more recent works
of reference, including Jørgensen and Fath (2008), Rock-
wood (2015), and Kliman (2016).

A consensus interpretation of m1 is that it represents the
mean age at which a typical parent produces offspring. The
aim of this note is to show that this interpretation is inaccu-
rate and can be problematic in practice. To do so, I introduce
a more direct measure of the mean age at reproduction of a
typical parent. Consider a typical parent, and compute the
average of the ages at which it gives birth to its offspring.
The expected value of this average is what we term the mean
age at reproduction. Under standard assumptions, it is given
by

t p
1
c

ð1∞

0

Ð t
0sm(s)dsÐ t
0m(s)ds

1 2 e2
Ð t

0
m(s)ds

� �
f (t)dt, ð3Þ

where f denotes the probability density function of the life
span of an individual and the constant
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c p
ð1∞
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Ð t

0
m(s)ds

� �
f (t)dt ð4Þ

is the fraction of individuals that produce offspring during
their lifetime. As with m1, there is a discrete-time formula
for t:

t p
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c

X
t⩾1
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sp1ms

1 2
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sp1

e2ms

 !
pt , ð5Þ

where pt p ℓt 2 ℓt11 is the probability mass function of the
life spans of individuals and

c p
X
t⩾1

1 2
Yt
sp1

e2ms

 !
pt: ð6Þ

Using the expressions of m1 and t, we show that these two
quantities can differ greatly, even in the most simple mod-
els. We also prove that m1 is always greater than t and that
the difference between the two can be arbitrarily large. Fi-
nally, comparing the two measures numerically for 3,871
real-world models from the COMPADRE and COMADRE
databases, we obtain an average discrepancy of 20.6% and
find that in one model out of four they differ by more than
30%.

Interpretation of the Expressions of m1 and t

The detailed derivations of the expressions of m1 and t can
be found in appendixes A–C. A brief overview of some of
the mathematical notions on which they rely is provided
in the supplemental PDF (available online). Here we pre-
sent the assumptions behind the formulas and explain what
the quantities m1 and t correspond to. Note that although
they are seldom made explicit, the following mathematical
assumptions are essential to the expressions of m1 given in
the introduction.

In the continuous-time setting, we assume (1) that the
lifetimes of individuals are independent copies of a random
variable T such that P(T ⩾ t) p ℓ(t) and (2) that births are
punctual random events that occur while individuals are
alive (but are independent of everything else) and that there
exists a function m such that the expected number of off-
spring produced by any individual alive between ages a and
b is

Ð b
am(t)dt—in other words, that the birth events are the

points of a point process with intensity m. Such models are
known as Crump-Mode-Jagers processes (Crump and Mode
1968, 1969; Jagers 1969) and are also sometimes referred to
as generalized branching processes. In the discrete-time set-
ting, formula (2) is replaced by the assumption that at each
age t p 1, 2, ::: at which an individual is alive, it produces
a random number of offspring that is independent of every-
thing else and has mean mt.

Under these hypotheses, if we let N be the random vari-
able corresponding to the number of offspring produced by
a typical individual over its lifetime and let S be the sum of
the ages at which it produces them, then the quantitym1 given
in formulas (1) and (2) can be rigorously interpreted as

m1 p
E(S)
E(N)

, ð7Þ

where E(⋅) denotes the expected value (for details, see
app. B). Contrary to what is often claimed, this is neither
the average of the ages at which the individual produces off-
spring, which would be the random variable S=N , nor the
expected value of this average, which would be E(S=N).
However, under the assumption that individuals are inde-
pendent, the average of the ages of the parents of the off-
spring produced by a cohort goes to m1 as the size of the co-
hort goes to infinity. This justifies the interpretation of m1 as
the mean age of parents of offspring produced by a cohort.

A natural measure for the mean age at reproduction
would be the expected value of S=N , the average age at
which an individual produces offspring. However, this av-
erage is well defined only when the individual produces
some offspring—that is, when N 1 0. Thus, we define our
measure t to be the conditional expectation

t p E(S=NjN 1 0): ð8Þ
Equivalently, t can be defined as follows: consider a typical
parent (i.e., sample an individual uniformly at random among
all individuals that produce some offspring), and denote by
~N its number of offspring and by ~S the sum of the ages at
which it produces them. Then,

t p E(~S =~N): ð9Þ
Assuming that birth events form a Poisson point process

(or in the discrete-time setting, that individuals produce a
Poissonian number of offspring), we prove in appendix C
that t is given by formula (3) (respectively, formula [5] in
discrete time). Observe that while the interpretation of m1

as an average on a large cohort crucially hinges on the inde-
pendence of individuals, this hypothesis is not used in the
derivation of t because it is truly a characteristic of individ-
uals, as opposed to m1, which is a property of the cohort.

Sometimes, especially when studying evolution, one is
interested in the average of a function z of the ages at which
a parent produces offspring, rather than in the average of
the ages themselves.1 In that case, letting A be uniformly
chosen among the ages at which a typical parent produces
offspring, for every function z,

1. This was pointed out by Mauricio González-Forero.
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E(z(A)) p
1
c

ð1∞

0

Ð t
0z(s)m(s)dsÐ t

0m(s)ds
1 2 e2

Ð t

0
m(s)ds

� �
f (t)dt,

ð10Þ
with the constant c given in equation (4).

Finally, expressions of m1 are also available for more gen-
eral population structures. For instance, in matrix popula-
tion models, if we let S be the survival matrix and F be the
fertility matrix (i.e., if we decompose the projection matrix
A into A p S1 F to separate survival probabilities from
fertilities) and denote by w the stable distribution of the
population (the dominant right eigenvector of A) and e p
(1, ::: , 1) the row vector consisting only of ones, then we
can use the following modern version of the classic formula
of Cochran and Ellner (1992), which can be found in Ellner
(2018):

m1 p
eF(I2 S)22Fw
eF(I2 S)21Fw

: ð11Þ

Note that (I2 S)21 p
P

t⩾1St21 and that (I2 S)22 pP
t⩾1tSt21, so that this expression closely parallels formula (2).

The entries of e represent the weight given to each type of
offspring when computing the average age of the parents.
Should we wish to give more importance to some offspring
type, any vector with positive entries could be used in place
of e—in fact, Cochran and Ellner (1992) suggest using the
reproductive values as weights. See Steiner et al. (2014) and
Ellner (2018) for more on this.

As explained in appendix C, there does not seem to be a
simple analogue of equation (11) for t. Nevertheless, its def-
inition as the mean age at which a typical parent produces
offspring still applies in the context of matrix population
models, and it can be estimated numerically via individual-
based simulations (see sec. S6 of the supplemental PDF).

Examples

Theoretical Examples

Let us start with a simple but fundamental example where
individuals reproduce at constant rate m. In that case,

m1 p
E(
Ð T

0msds)

E(
Ð T

0mds)
p

1
2
E(T2)
E(T)

ð12Þ

and

t p E
Ð ~T

0 msdsÐ ~T
0 mds

0
@

1
Ap

1
2
Eð~T Þ, ð13Þ

where T is the life span of individuals and ~T is the life span
of parents. The expression of t is unsurprising: when birth
events are uniformly distributed on the lifetime of individ-

uals, they occur on average in the middle of their life. Also,
since

E(~T ) p
E(T(1 2 e2mT))
E(1 2 e2mT)

, ð14Þ

and that for all t 1 0, 1 2 e2mt increases to one as m goes to
infinity, it follows from the monotone convergence theo-
rem that

E(~T ) → E(T) as m → 1∞: ð15Þ
By a similar argument (see sec. S3 of the supplemental PDF),
we also have

E(~T ) →
E(T2)
E(T)

 as m → 0: ð16Þ

Furthermore, since E(~T ) is a decreasing function of m, we
conclude that when individuals reproduce at a constant rate,

1
2
E(T) ⩽ t ⩽ m1: ð17Þ

In fact, the inequality t ⩽ m1 holds for general age-specific
fertility functions, as shown in section S4 of the supplemen-
tal PDF.

To make this example more concrete, let us further as-
sume that individuals die at constant rate h, so that T is an
exponential variable and ℓ(t) p e2ht . In that case, we get

m1 p
1
h
 and t p

1
2h

1 1
1

1 1m=h

� �
: ð18Þ

Note that here m1 is also equal to the expected life span in the
population. Interpreting it as the mean age at which parents
reproduce would therefore lead to a contradiction, because—
in the case where the fertility m is large enough, so that most
individuals get to reproduce during their lifetime and the
life span of a typical parent is not very different from that
of a typical individual—this would imply that the age at
which an individual reproduces is on average the same as
the age at which it dies. This is absurd, because unless indi-
viduals reproduce exactly when they die, the former has to
be smaller than the latter.

From formula (18), we also see that for m=h large enough,
m1 ≈ 2t. For m p h, which corresponds to the minimum
ratio m=h for a viable population, the difference is already
25% of the value of m1. The relative difference between m1

and t as a function of m=h is plotted in figure 1.
Now consider the closely related discrete-time model

where individuals survive from one year to the other with
probability p and produce Poisson(m) offspring at each age
t ⩾ 1, so that

pt p (1 2 p)pt and ℓt p pt: ð19Þ
After straightforward calculations, we find that the numer-
ator in formula (2), which corresponds to the mean sum of
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the ages at childbirth, ismp=(1 2 p)2 and the denominator is
mp=(1 2 p). As a result,

m1 p
1

1 2 p
: ð20Þ

Note that this model can also be seen as a 1#1 matrix pop-
ulation model with survival matrix S p (p) and fertility ma-
trix F p (m), so formula (11) can also be used and gives the
same result.

Because E(T) p p=(1 2 p), we see that

m1 p E(T) 1 1, ð21Þ

which also corresponds to the expected life span of individ-
uals that reach age 1. For the same reason as before, this
implies that m1 is not credible as an estimate of the mean
age at which a typical parent produces offspring.

After standard calculations (see sec. S5 of the supple-
mental PDF), we find that

t p
1
2

1
1 2 p

1
1

1 2 pe2m

� �
: ð22Þ

As previously, (1=2)m1 ⩽ t ⩽ m1, but the difference between
m1 and t can be quite high, even for very reasonable values of
p and m: for instance, with p p :5 and m p 2, both mea-
sures differ by 23% of the value of m1; for p p :9 and m p 2,
they differ by 44%. Again, this is illustrated in figure 1.

Real-World Examples

The examples of the previous section show that m1 and t

can be very different, even in the most simple models. But
do they differ significantly in practice? To answer this
question, m1 and t were calculated for every model of the
COMPADRE Plant Matrix Database (ver. 4.0.1) and
COMADRE Animal Matrix Database (ver. 2.0.1; both data-
bases are available at https://www.compadre-db.org) for
which this could be done. Because there is no formula for
t in matrix population models, it was estimated numerically
in such a way that for each estimated value, the width of the
95% confidence interval was less than 2% of the estimated
value itself (for details, see sec. S6 of the supplemental
PDF). The code used to perform the simulation is provided
as an online enhancement.2 Figure 2 gives the distribution
of the relative difference between the two quantities, com-
puted as D% p 100(m1 2 t)=m1, and table 1 lists some statis-
tics of this distribution. These conclusively show that the
measures m1 and t differ significantly for most real-world
models. In particular, the fact that the median of (m1 2 t)=
m1 is of order 20% means that by using m1 to quantify the
mean age at reproduction, one overestimates its actual value
by more than 25% in half of the cases.

For a detailed example of a model in which m1 and t differ
greatly, see section S7 of the supplemental PDF. This exam-
ple is particularly interesting because it illustrates the fact
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Figure 1: Relative difference between m1 and t as a function of the parameters of the models considered. Left, the continuous-time model in
which individuals give birth at constant rate m and die at constant rate h. Right, the discrete-time model in which they survive from one year
to the other with probability P and give birth to Poisson(m) offspring each year. Dashed lines indicate values of the parameters for which the
population is not viable in the long term.

2. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
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that m1 can be greater than the expected life span conditional
on reproduction, which decisively rules out its interpretation
as the mean age at reproduction.

Before closing this section, let us comment on the fact
that some models (152 out of 3,871) appear to have t ! m1.
These are in fact models for which t is very close to m1 but be-
cause of the uncertainty in its estimation appears to be slightly
smaller than it. Indeed, for most of these models m1 2 t is
very close to zero (only 10 of them have a relative difference
jD%j 1 1%). All things considered, the fact that m1 lies be-
low the 95% confidence interval of t for only 0.46% of all
models is consistent with the fact that t ⩽ m1 (it would have
to be more than 2.5% to constitute a contradiction).

Finally, the excess of models for which m1 ≈ t in
COMPADRE compared to COMADRE is due to (mostly
2#2) models with very short generation times, presumably
corresponding to annual plants in which the life spans of
individuals exhibit little to no variation.

Discussion

The mean age of the parents of the offspring produced by a
cohort m1 and the mean age at reproduction t are two gen-
uinely different notions. So why have they not been recog-
nized as such before? Probably because precise definitions
of these quantities are seldom given. For instance, in the ref-
erences given above—which are or have been among the
most influential in the field—m1 is variously described as
the “mean age at childbearing in the stationary population”3

by Keyfitz (1968), the “mean age of childbearing in a co-
hort” by Coale (1972, eq. [2.10], p. 19), the “mean age at re-
production of a cohort of females” by Charlesworth (1994,
eq. [1.47a], p. 30), and the “mean age of the mothers at the
time of their daughter’s birth” by Rockwood (2015, eq. [4.12],
p. 98). Yet these four definitions fail to detail how this “mean”
should be computed and could thus be thought to refer to t.

It is not obvious from the definitions of m1 and t how
these two quantities are related—or indeed why they should
differ at all. One helpful way to think about it is the following:
m1 can be seen as an offspring-centric measure of the mean
age of parents, whereas t is a parent-centric measure of it. In-
deed, to compute m1 we ask each newborn produced by a co-
hort “how old is your parent?” while for t we ask a parent
“how old are you going to be when you have offspring?”
These questions have distinct answers because they corre-
spond to two different ways to sample a parent.

Among other things, this explains why m1 is greater than
t: indeed, parents that live longer tend to have more off-
spring and thus have a higher probability of being sampled
via their offspring than when the sampling is done uniformly
at random. As a result, they contribute more to m1 than to t.
Since these parents with longer life spans are also those that
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Figure 2: Distribution of the relative difference between m1 and t for the COMPADRE and COMADRE databases. The difference is given as
a percentage of m1; for instance, a 30% difference means that t p 0:7m1.

3. What Keyfitz calls the stationary population is actually a cohort.

Table 1: Statistics of the distribution of (m1 2 t)=m1 for the
COMPADRE and COMADRE databases

Database Mean 1st quartile Median 3rd quartile

COMPADRE 19.97 5.26 17.73 30.49
COMADRE 22.16 12.54 22.60 31.14

Note: All values are percentages.
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tend to have a higher mean age at reproduction, this biases
m1 upward compared to t.

This also explains why the difference m1 2 t goes to zero
as the fertility becomes vanishingly small (see sec. S3 of the
supplemental PDF): in that case, the proportion of parents
that give birth to more than one offspring during their life-
time goes to zero, and as a result the two parent-sampling
schemes become equivalent.

To close this series of remarks regarding the link between
m1 and t, observe that from a purely mathematical point of
view the difference between the two can be made arbitrarily
large. Indeed, recall that when individuals reproduce at a
constant rate m, m1 p E(T2)=E(T) and t → (1=2)E(T) as
m → 1∞. Thus, by choosing an appropriate distribution
for the life span T and taking m large enough, we can make
m1 arbitrarily large and t arbitrarily small.

Now that we have seen that m1 and t are two different
concepts that differ significantly in practice and so we better
understand the link between them, one important question
remains: which of m1 or t should be favored in which con-
text? From a practical point of view, the expressions of t are
admittedly more complex than those of m1. This, of course,
is not a problem for real-world applications, where they are
going to be evaluated numerically; for theoretical applica-
tions, however, this does make exact calculations harder,
if possible at all.

Another important difference between both measures is
their slightly different domain of validity. While the inter-
pretation of m1 hinges on the assumption that there are no in-
teractions between individuals, the expression of t relies on
that of Poissonian births. One might cynically argue that this
is hardly a problem, because both hypotheses are often used
jointly in theoretical models and never met in real-world
applications. Nevertheless, there is a real difference here that
should be taken into account when deciding which measure
to choose.

Last, t has the advantage of having a more direct inter-
pretation than m1. Judging from the phrasing used by several
authors, it seems that it is sometimes t they have in mind,
even when working with m1. Moreover, the interpretation
of m1 might not be as intuitive as we usually assume; notably,
the fact that it can be greater not only than the expected life
span but also than the expected life span conditional on re-
production (as illustrated by the “medium density” scenario
for Astrocaryum mexicanum in sec. S7 of the supplemental
PDF) is likely to come as a surprise to many researchers.
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APPENDIX A

An Explicit Model for the Population

Here we recall and further detail the assumptions on which
the expressions of m1 and t and their interpretations rely,
and we introduce some notation. The setting that we use
is that of a Crump-Mode-Jagers process (Crump and Mode
1968, 1969; Jagers 1969), where the population consists of a
discrete set of individuals such that (i) each individual i has
a random life span Ti with distribution n and that is inde-
pendent of everything else and (ii) individual i produces a
new offspring at age t for every point of Pi at t such that
t ⩽ Ti, where Pi is a point process with intensity m on [0,
1∞[ that is independent of everything else. Note that the
point processes Pi are not homogeneous (m is a function
of the age of individuals) and that they do not have to be
simple (an individual can give birth to several offspring si-
multaneously). For mathematical tractability, however, it is
often convenient to work with Poisson point processes. As
explained in section S1 of the supplemental PDF, where a
few useful results about Poisson point processes can also
be found, these allow one to formalize the familiar idea that
events “occur at rate m.” While the assumption that Pi are
Poisson point processes is not needed in the study of m1,
it will be required to derive explicit formulas for t.

In this setting, the definition and interpretation of the sur-
vivorship function and the age-specific fertility are straight-
forward. The survivorship is defined by4

ℓ(t) p P(Ti ⩾ t) p n([t,1∞[): ðA1Þ
Working with the measure n is convenient because it makes
it possible to treat the case where Ti is a continuous random
variable and the case where it is a discrete random variable
simultaneously. However, in many applications Ti will have
a density f. Thus, we will do most of our calculations with n

but express our final results in terms of f or ℓ, as in formu-
las (1) and (3). Note that this essentially consists in replac-
ing dn(t) by f(t)dt in integrals and that either of f and ℓ

4. In probability theory and statistics, the survival function almost invari-
ably refers to the complementary cumulative distribution function of Ti,
t ↦ P(Ti 1 t). Here, however, we will stick to the convention used in biology.
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can be deduced from the other, since ℓ(t) p 1 2
Ð t

0 f (s)ds
and f (t) p 2ℓ

0(t).
The age-specific fertility is the function m. If we denote

by Mi(a, b) the integer-valued random variable correspond-
ing to the number of offspring produced by i between ages a
and b, then assuming that b ⩽ Ti we have, as expected,

E(Mi(a, b)) p
ðb
a
m(t)dt: ðA2Þ

Obviously, the framework of Crump-Mode-Jagers pro-
cesses is not meant to take into account all phenomena that
shape the structure and dynamics of real-world popula-
tions. For instance, it assumes that individuals are indepen-
dent and thus excludes any kind of density dependence.
Similarly, the (optional) assumption that individuals re-
produce at rate m is constraining and in particular implies
that they cannot produce several offspring simultaneously.
Nevertheless, this framework is close to the minimal set-
ting containing all the ingredients needed to define most
descriptors of populations, while being simple enough to
remain tractable and make it possible to derive explicit for-
mulas for these descriptors. Moreover, the hypotheses above
correspond quite well to the assumptions that are made (typ-
ically implicitly) to obtain the classic expressions of many
descriptors of populations.

Finally, to obtain discrete-time equivalents of formulas
(1) and (3), we will need to consider the following version
of the model, which allows simultaneous births: we keep as-
sumption (i) under the extra hypothesis that the life span Ti

is an integer-valued random variable, and we replace (ii) by
the assumption that at each age t p 1, ::: ,Ti, individual i
gives birth to M(i)

t new individuals. Again, this corresponds
quite well to the usual hypotheses on which many classic
formulas rely.

APPENDIX B

Mean Age of the Parents of the Offspring
Produced by a Cohort

We now give a rigorous interpretation of the quantity m1

given by formulas (1) and (2). As we will see, this interpre-
tation is more subtle than what is usually assumed. This is
because m1 does not correspond to the expected value of the
average of the ages of the parents of the offspring produced
by a cohort but only to the limit of this average when the
size of this cohort goes to infinity.

Let C denote a cohort, that is, a set of n individuals con-
sidered from the time of their birth to the time of their
death. Let Ti be the life span of individual i and Pi be the
set of ages at which it produces offspring. Note that in
our setting, conditional on Ti, Pi is a point process with in-
tensity m on [0, Ti].

The average of the ages of the parents of the offspring
produced by the cohort over its lifetime is

ZC p

P
i∈C
P

t∈Pi tP
i∈C
P

t∈Pi1
p

P
i∈CSiP
i∈CNi

, ðB1Þ

where Ni p
P

t∈Pi1 is the number of offspring produced by
individual i and Si p

P
t∈Pi t is the sum of the ages at which

it produces them. Note that ZC is well defined only whenP
i∈C Ni 1 0 but that this happens with probability arbi-

trarily close to one for a large enough cohort.
As we have already seen, the expected number of off-

spring produced by an individual i whose life span is
Ti p t is ð t

0
m(s)ds: ðB2Þ

This quantity can be thought of as E(NijTi p t), even
though this interpretation is subject to some caution. At
any rate, it follows that

E(Ni) p
ð1∞

0

ð t
0
m(s)ds

� �
dn(t): ðB3Þ

Moreover, using Fubini’s theorem,ð1∞

0

ð t
0
m(s)ds

� �
dn(t) p

ð1∞

0
m(s)

ð1∞

s
dn(t)

� �
ds: ðB4Þ

Using the fact that
Ð 1∞
s dn(t) p ℓ(s), we get the well-known

expression for R0, the mean number of offspring produced
by an individual during its lifetime:

R0 p E(Ni) p
ð1∞

0
m(t)ℓ(t)dt: ðB5Þ

Using Campbell’s formula (eq. [S1.1] in the supplemen-
tal PDF) and the exact same reasoning, we can express the
mean sum of the ages at which an individual produces off-
spring as

E(Si) p
ð1∞

0
tm(t)ℓ(t)dt: ðB6Þ

Let N (respectively, S) denote a random variable that has
the common distribution of the variables Ni (respectively,
Si). Then, as pointed out in most sources presenting the
measure m1, we have

m1 p
E(S)
E(N)

: ðB7Þ

This does not, however, establish a link between m1 and ZC,
the average age of the parents of offspring produced by the
cohort. To see how these two quantities are related, observe
that since the variables Ni (respectively, Si) are independent,
if we denote by n p Card(C) the size of the cohort, then by
the law of large numbers, as n → 1∞,
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1
n

X
i∈C

Ni → E(N) and 
1
n

X
i∈C

Si → E(S): ðB8Þ

As a result,

ZC p
(1=n)

P
i∈CSi

(1=n)
P

i∈CNi

→
n→1∞

m1, ðB9Þ

where the convergence is almost sure (i.e., happens with
probability 1).

Importantly, note that m1 is not the expected value of
Si=Ni or of ZC. In fact, the expected value of Si=Ni (condi-
tional on this variable being well defined) is precisely what
we have termed the mean age at reproduction. We explain
how to compute it in the next section.

APPENDIX C

Mean Age at Reproduction t

Recall that we have defined the mean age at reproduction to
be the expected value of the average of the ages at which a
typical parent produces offspring. Formally, assuming that
individual i has some offspring, the average age at which it
produces them is

�Xi p
1
Ni

X
t∈Pi

t, ðC1Þ

where, as before, Ni is the total number of offspring pro-
duced by i and Pi is the set of ages at which it produces them.
The mean age at reproduction is thus

t p E(�XijNi 1 0), ðC2Þ
which, given our assumptions, does not depend on i or the
composition of the population.

To compute t, let I be a “typical parent”—that is, be
uniformly sampled among the individuals that produce
offspring during their lifetime. We then have

E(�XijNi 1 0) p E(�XI): ðC3Þ
Moreover, letting ~T denote the life span of I, �XI is the aver-
age of a point process with intensity m on [0, ~T]. As ex-
plained in section S1 of the supplemental PDF, in the case
of a Poisson point process, the expected value of this average
is simply the expected value of a random point of [0, ~T] with
density t ↦ m(t)=

Ð ~T
0 m(s)ds. The remarkable fact that it does

not depend on the value of Ni is a consequence of the ab-
sence of internal structure of Poisson point processes. From
this, we get

E(�XI
~jT ) p

Ð ~T
0 sm(s)dsÐ ~T
0 m(s)ds

: ðC4Þ

As a result,

t p

ð1∞

0

Ð t
0sm(s)dsÐ t
0m(s)ds

d~n(t), ðC5Þ

where ~n is the law of the life span ~T of I. Note that it is dif-
ferent from n, the life span of a fixed individual, because
conditioning on the fact that an individual produces off-
spring biases its life span (e.g., if there exists an age a such
that m(t) p 0 for t ! a, as is frequently the case in real ap-
plications, then individuals that produce offspring all live
longer than a, whereas it is not necessarily the case for other
individuals).

The last thing that we need to do to get an explicit for-
mula for t is thus to determine ~n. For this, note that

P(~T ⩽ t) p P(Ti ⩽ tjNi 1 0)

p
P(Ti ⩽ t,Ni 1 0)

P(Ni 1 0)
:

ðC6Þ

Conditioning on Ti, using the void probabilities of Poisson
point processes (see eq. [S1.1] in the supplemental PDF)
for the probability that an individual with lifetime s pro-
duces some offspring, and finally integrating against n,
we get

P(Ti ⩽ t,Ni 1 0) p
ðt

0
1 2 e2

Ð s

0
m(r)dr

� �
dn(s): ðC7Þ

As a result,

d~n (t) p
1
c

1 2 e2
Ð t

0m(s)ds
� �

dn(t), ðC8Þ

where the constant c p P(Ni 1 0) is given by

c p
ð1∞

0
1 2 e2

Ð t
0m(s)ds

� �
dn(t): ðC9Þ

Note that by integrating by parts and using ℓ(t) → 0 as
t → 1∞, we can also express c directly in terms of ℓ and
m as

c p
ð1∞

0
e2
Ð t

0m(s)dsm(t)ℓ(t)dt: ðC10Þ

Putting the pieces together in the case where Ti has a den-
sity f, we get formula (3):

t p
1
c

ð1∞

0

Ð t
0sm(s)dsÐ t
0m(s)ds

1 2 e2
Ð t

0m(s)ds
� �

f (t)dt: ðC11Þ

Note that neither the biological interpretation of t nor the
derivation of its expression depends on the assumption
that individuals are independent.
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Formula (10) for the average of a function z of the ages
at which a parent produces offspring is obtained similarly,
except that we have to work with

�Wi p
1
Ni

X
t∈Pi

z(t) ðC12Þ

instead of �Xi and use equation (S1.10) instead of equa-
tion (S1.6) to get

E( �WI
~jT ) p

Ð ~T
0 z(s)m(s)dsÐ ~T

0 m(s)ds
: ðC13Þ

The justification of the expression of t for discrete age
structures can be found in section S2 of the supplemental
PDF. It essentially consists of approaching the discrete-time
model with the continuous-time model by choosing appro-
priate age-specific fertilities and relies on the assumption
that the number of offspring produced each year by each in-
dividual follows a Poisson distribution. It should also be
pointed out that because in the discrete-time setting indi-
viduals can produce several offspring simultaneously, there
are two possibilities to define the average age at offspring
production: counting all births equally or weighting them
by the number of offspring produced. Formula (5) is ob-
tained by weighting the ages by the number of offspring
produced when averaging them.

Finally, to obtain an equivalent of formula (5) for more
general population structures, such as those allowed by ma-
trix population models, one would need to (1) find the law
of the conditional trajectory of an individual in the life cycle
given that it produces offspring and (2) integrate the aver-
age of the ages at which it produces offspring against this
law. While the first of these steps is feasible,5 it is unclear
whether the resulting expression—if it can be obtained—
would be simple enough to be useful.
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5. This was explained to me by Stephen Ellner—see, e.g., ch. 3 of Ellner et al.
(2016).
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