On Algebraic Abstractions for Concurrent
Separation Logics

This artefact is a companion to the paper On Algebraic Abstractions for Concurrent Separation Logics. The
artefact contains Coq sources of the developments presented in the submission. The artefact supports the
developments paper in both a theoretical and a practical way.

First, it provides a complete bottom-up mechanization of partial commutative monoids (PCM), separating
relations, PCM morphisms, and the related constructions. The artefact formalizes all the concepts defined in the

paper.

Secondly, the artifact demonstrate practical utilisation of the theory of PCMs. Using fcs1 (Nanevski et al, 2019)
as the opaque type theory, the artifact provides mechanical verification of Ticket lock, the running example
developed in the paper. The artefact also contains additional examples that the main body submission does not
discuss (see Additional Artefact Description for details).

Contents

List of Claims
o Section 2 - PCM Abstractions by Example
o Section 3 - PCM Abstractions formally

o Section 4 - Invertible morphisms and separating relations

Download, Installation, and Sanity-Testing
o Booting Up
o Sanity-Testing

Evaluation Instructions
o Type-Checking, Proof-Checking and Consistency
o Evaluating-the-Claims-of-the-Paper
o Reusability of the Theory of PCM

Additional Artefact Description

o Structure of the Project

o The Virtual Machine Image

List of Claims

The paper On Algebraic Abstractions for Concurrent Separation Logics makes the following claims in order they
occur in the paper:

Section 2 - PCM Abstractions by Example

The Ticket lock example is developed in the file examples/ticketlock.v.

Section 2.5

The programs lock and unlock with ghost code annotations and concrete specifications are program
definitions lock and unlock (on lines 488 and 515 respectively). In comparison to the paper, these specs are
carried out more generically, in large-footprint style, i.e. for an arbitrary history h rather then for the empty
history \emptyset .

Section 2.6

The morphism \alpha is defined as definition alpha (line 558) and its separating relations as alpha_rel (line
539).

The abstract specs are given as program definitions lock_alpha and unlock_alpha (lines 616 and 626
respectively).

Section 2.7

The specifications utilising sub-PCM construction and the morphisms alpha' (defined on line 663) are given
as lock' and unlock' (lines 666 and 676 respectively).

Section 3 - PCM Abstractions formally

Section 3.1

Definition 3.7- TPCMs are defined in the file pcm/pcm.v (module TPCM). In comparison to the paper, the
definition in the formalisation is stratified into plain PCMs and PCMs that possess top (T) element (property 4 of
Def. 3.1). Note that we implement algebraic structures as packed classes thus the definition of TPCMs spans
several Coq definitions in the module; similarly for other algebraic structures in this list.

Proposition 3.3 - the proposition is given by the canonical structure prodTPCM in pcm/pcm.v (line 633).

Section 3.2

Definition 3.4 - separating relations are defined in the file pcm/morphisms.v (module SepRel). In comparison

to the paper, separating relation are defined more general and do not impose strengthening (property (2) of Def

3.4) and as a consequence, the assumption (x \bot y, denoted valid (x \+ y)inthe code)is carried around
explicitly where needed.

The actual axioms of Def 3.4 are given as orth_axiom and the equivalence with the definition seprel_axiom in
the presence of the assumption valid (x \+ y) isgiven bylemma orth_sep (line 60 of pcm/morphism.v).

Proposition 3.5- sepU® in pcm/morphism.v (line 260)

Basic examples of separating relations are formalised as sep@ and sepT in pcm/morphism.v (lines 286 and
275 respectively).

Separating relation \bot_alpha is formalised as alpha_rel in examples/ticketlock.v (line 539).

Separating relation ordered is formalised as omega_rel and proven to be a separating relation as
lemma omega_seprel in examples/ticketlock.v (lines109 and 113).

Non-example of no_gaps is defined as upsilon_rel and proven not to be a separating relation
(upsilon_non_seprel)in examples/ticketlock.v (lines139 and 141).

Section 3.3

Definition 3.6 - structure morphism in pcm/morphism.v (line 408).

The basic examples are formalised as canonical structure id_morph (file pcm/morphism.v , line 704)
and fst _morph and snd_morph (file pcm/morphims.v, lines 754 and 759).

Definition 3.7 - the definitions are given in the file pcm/morphism.v , composition is given by comp_morph (line
712), tensor product as pmorph_morph (line 908), and arrow productas fprod_morph (line 743).

Theorem 3.8 - the categorical properties of morphisms are show in the file pcm/morphisms.v in
section CategoricallLaws (line 719).

Definition 3.9 - kernel and equalizer are formalised in file pcm/morphism.v as ker and eqlz (lines 500 and
509 respectively) and shown to be separating relations as canonical structures ker_seprel (line 624)

and eqlz_seprel (line 655)in the same file.

Definition 3.70 - restriction is formalised in file pcm/morphism.v as res (line 505) and shown to be a morphism
by the canonical structure res_morph (line 634).

Example 3.77 - that a filter over a finite map is a morphisms is shown in file pcm/unionmap.v as the canonical

structure umfilt_morph (line 3473). The size function is provided by ssreflect library and we do not show it is
a morphism.

Section 3.4

Definition 3.12 - Sub-PCMs are defined in file pcm/morphism.v in module SubPCM (line 926), the
injection \iota isformalised as pval and the retraction \rho as psub.

Concrete construction of a sub-PCM s given in file pcm/morphism.v in module SepSubPCM (line 1090), in
particular:

Lemma 3.73 - the properties are show in file pcm/morphisms.v inorder aslemmata xsep_joinC (line
1129), xsep_joinA (line 1152), xsep_unitL (line 1155), xsep_valid _undef (line1193), xsep_valid unit (line
1169), and xsep_validL (line 1162, the right part follows from commutativity).

That the construction gives rise to a sub-PCM - the canonical structure xsepSubPCM in pcm/morphism.v (line
1258)

Section 4 - Invertible Morphisms and Separating Relations

Section 4.3

Definition 4.7 - invertible separating relations are defined as inv_rel infile pcm/invertible.v (line 32).
Definition 4.2 - invertible morphisms are defined as inv_morph infile pcm/invertible.v (line 44).
Proposition 4.3 - lemma inv_sepT infile pcm/invertible.v (line 49)

Proposition 4.4 - lemmata inv_comp and inv_cprod infile pcm/invertible.v (lines 55 and 71 respectively)
Proposition 4.5 - lemmata inv_ker and inv_eqlz infile pcm/invertible.v (lines 66 and 79 respectively)
Theorem 4.6 - the theorem is generalised from the concrete construction in the paper (i.e. xsepSubPCM) to an
arbitrary sub-PCM over the appropriate separating relation as inv_comp_sub in file pcm/invertible.v (line
99).

Lemma 4.7-lemma inv_alpha _seprel infile examples/ticketlock.v (line 688)

Lemma 4.8 - lemma inv_alpha infile examples/ticketlock.v (line 695)

Corollary 4.9 - corollary inv_alpha' infile examples/ticketlock.v (line 704)

Section4.4

Lemma 4.70 - lemma duplicable infile examples/CAP.v (line15).

Lemma 4.77- lemma homomorphic infile examples/CAP.v (line 30).

Download, Installation, and Sanity-Testing

We provide a VM image in Open Virtual Appliance (OVA) format, FCSL-popl12021.ova , via Zenodo. The provided
image can evaluate the FCSL developments out of the box. Any virtualisation software compatible with the OVA
format should suffice to work with the provided image. For further details see Additional artefact description.

Booting Up

Obtain the VM image from Zenodo, import the provided VM image into your virtualisation software (supporting
the .ova standard)and boot it up. It logs in automatically as the fcsl user.

Sanity-Testing

The source code of the project is located in ~fcsl/fcsl-popl2021 . The source code has already been compiled
to allow immediately inspect it using Emacs/ProofGeneral or Coqlde. As a sanity check, we suggest removing
compilation artefacts and rebuilding the project by invoking make from the project directory:

cd ~fcsl/fcsl-popl2l
make clean && make

The build process usually takes from 5 to 10 minutes. The output of the make should be the following:

fcsl@xubuntu:~/fcsl-popl21l $ make clean && make
coq _makefile -f CogProject -o CogMakefile
make --no-print-directory -f CogMakefile clean
CLEAN

coq_makefile -f _CoqProject -o CogMakefile
make --no-print-directory -f CogMakefile
COQDEP VFILES

Co0QC options.v

C0QC core/axioms.v

C0QC core/prelude.v

C0QC core/pred.v

(31 lines omitted)

Note that the build process output does not contain neither errors nor warnings when running the versions
of Cog and Mathcomp library provided.

Evaluation Instructions

CoqIDE and Emacs (with ProofGeneral) can be used to inspect and navigate the source files in the ~/fcsl-
popl2021 folder. Both can be invoked from the terminal, or, alternatively, using launchers on the desktop.

Type-Checking, Proof-Checking and Consistency

Type Checking is Proof Checking. Since we are using a dependently typed theory to mechanize our development,
proof scripts are checked by Coq's compiler coqc . All the claims in the paper reduce to asserting that a certain
definition has a valid Coq Type. This constitutes the sanity check make clean && make we described in the
previous section.

No Admitted Proofs. Our development does not contain Admitted proofs. All the developments presented in
the paper are completely mechanized, without unfinished proofs, or hidden meta-theory assumptions. Easy way
to observe this is to run the following command from the project directory:

find -name '*.v' | xargs grep 'Admitted\.' | wc -1

The command counts the admitted proofs:

fcsl@xubuntu:~/fcsl-popl21l$ find -name '*.v' | xargs grep 'Admitted\.' | wc -1
0

On the other hand, the number of closed proofs (there are no Defined. proofs)can be computed by the
command

find -name '*.v' | xargs grep 'Qed\.' | wc -1
fcsl@xubuntu:~/fcsl-popl21l$ find -name '*.v' | xargs grep 'Qed\.' | wc -1
3044

Axioms. We do rely though, on two standard axioms on top of Coq: propositional and functional extensionality,
which are known to be compatible with Coqg's underlying type-theory. These are introduced in core/axioms.v .

Tactics. Our approach to formalisation requires no particular tactic support when applied in Coq. The way to avoid
tactics is by building appropriate mathematical structures and their associated theories. Then the proof
development can be done by lemmas, not tactics. In the case of concurrent separation logic, it requires PCM
morphisms and separating relations from this paper.

Evaluating the Claims of the Paper

The theory of PCM morphisms is provided in directory pcm/ while the example is in directory examples/ . The
evaluation is best carried out by comparing the claims of the paper (listed in section List of Claims) and the
respective definitions in the code and checking that Coq definition, lemma, etc. corresponds to the statement in
the paper. This can be done using CoqIDE or Emacs/ProofGeneral which further allows to step trough the proofs
and compare the mechanical proofs with proofs in the paper. Alternatively, the source code can be explored
through generated HTML documentation that is available in directory html/ . This documentation has the benefit
of hyperlinks between identifiers and their places of definition, which facilitates understanding of the formal Coq
statements. The relevant files are:

e html/fcsl.examples.ticketlock.html for the ticket lock example,

e html/fcsl.examples.CAP.html for the comparison to CAP,

e html/fcsl.pcm.pcm.html for PCMs,

e html/fcsl.pcm.morphism.html for morphisms and separating relations, and

e html/fcsl.pcm.invertible.html forinvertibility.

Note: If you cleaned and rebuilt the project in sanity test step, the HTML documentation was cleaned as well. You
might need to rebuild it by running make html.

Reusability of the Theory of PCM

The contributions of the paper On Algebraic Abstractions for Concurrent Separation Logicsis the use of the
theory of PCMs for assertion logic. To this effect, we have made the source code available via GitHUB and as an
OPAM package cog-fcsl-pcm.

For the ease of evaluation of claims made in the paper we make the theory of PCM, the opaque logic FCSL, and
the examples part of one source tree. This choice, as opposed to, e.g., properly making the source code of
examples dependent on packages for PCMs and FCSL, allows seamless navigation of source code from within
CoqIDE or Emacs.

Additional Artefact Description

Structure of the Project

The structure of the project is desrcribed in a separate file STRUCTURE.md. The file gives details of particular file
in this artefact and list addition examples that are provided including their short descripions.

The Virtual Machine Image

The virtual machine image we provide was created using Oracle Virtual Box Version 6.1.14 r140239 (with the
corresponding Extension Pack). Both can be downloaded free of charge
from https://www.virtualbox.org/wiki/Downloads, and GNU/Linux, macOS, and Windows versions are supported.

FCSL-popl2021.0ova

OVA Contents The virtual machine comes with the following components pre-installed:

e Xubuntu 20.04.1LTS

e OPAM2.0.5

e OCAML 4111

e Coq8.12

e Mathcomp 1.11.0 (SSReflect's Mathematical Components Library),
e GNU Emacs 26.3 + ProofGeneral (MELPA: 20200911.3),

e CoqlDE8.12

The VM is more-over set up with 4GB of RAM, and a 50GB (extensible) virtual hard drive. This settings can be
changed using the VM manager to optimize evaluation, but we suggest not reducing the virtualized RAM setting.

Credentials The fcsl user's passwordis fcsl,the sudo command is enabled for the user fcsl (using the
same password).

References

Aleksandar Nanevski, Anindya Banerjee, German Andrés Delbianco, and Ignacio Fabregas. 2019. Specifying
concurrent programs in separation logic: morphisms and simulations. Proc. ACM Program. Lang. 3, OOPSLA,
Article 161 (October 2019), 30 pages. DOI:https://doi.org/10.1145/3360587

