Software Open Access
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/9defc212-0ebf-4e94-865b-4dc0546961ff/EA_analysis_code.zip" }, "checksum": "md5:0732e2070759c1b820e4c1321f78f027", "bucket": "9defc212-0ebf-4e94-865b-4dc0546961ff", "key": "EA_analysis_code.zip", "type": "zip", "size": 122739 } ], "owners": [ 71798 ], "doi": "10.5281/zenodo.4110614", "stats": { "version_unique_downloads": 15.0, "unique_views": 76.0, "views": 88.0, "version_views": 88.0, "unique_downloads": 15.0, "version_unique_views": 76.0, "volume": 1841085.0, "version_downloads": 15.0, "downloads": 15.0, "version_volume": 1841085.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4110614", "conceptdoi": "https://doi.org/10.5281/zenodo.4110613", "bucket": "https://zenodo.org/api/files/9defc212-0ebf-4e94-865b-4dc0546961ff", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4110613.svg", "html": "https://zenodo.org/record/4110614", "latest_html": "https://zenodo.org/record/4110614", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4110614.svg", "latest": "https://zenodo.org/api/records/4110614" }, "conceptdoi": "10.5281/zenodo.4110613", "created": "2020-12-14T14:59:09.462136+00:00", "updated": "2020-12-15T00:27:12.133932+00:00", "conceptrecid": "4110613", "revision": 2, "id": 4110614, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4110614", "description": "<p><strong>Code for detecting and classifying epileptiform activity (EA)</strong><br>\nWritten by Katharina Heining, last modified 2020/10/20 <br>\nInstitution: University of Freiburg, Germany<br>\nAccompanying Paschen et al. (2020), eLife</p>\n\n<p>The subdirectory <strong>core</strong> contains the main code: </p>\n\n<ul>\n\t<li> <em>ed_detection.py</em>: wrapper for preprocessing, spike detection and spike sorting </li>\n\t<li> <em>artisfaction.py</em>: semiautomatic identification of artifacts</li>\n\t<li> <em>blipS.py</em>: spike detection* blipsort.py: spike sorting</li>\n\t<li> <em>ea_analysis.py</em>: wrapper for burst detection and classification</li>\n\t<li> <em>somify.py</em>: projecting data on a SOM and SOM plotting</li>\n\t<li> <em>helpers.py</em>: supportive functions for the other scripts</li>\n\t<li> <em>ea_management.py</em>: reading data, handling results, recording-class functions</li>\n</ul>\n\n<p><em>configAnalysis.yml</em> contains parameters used for analyses <br>\n<em>som.h5</em> holds the SOM obtained from reference dataset -- see Heining et al. (2019), referenced below.* </p>\n\n<p>The subdirectory <strong>code_for_figures</strong> contains the code used for illustration (Supplementary Figure 1).<br>\n <br>\nThe code contained in this folder is © K. Heining, 2020, developed at the University of Freiburg. <br>\nThis code is made available under the BSD license enclosed with the software (see licence.txt).<br>\nOver and above the legal restrictions imposed by this license, if you use this software for an academic publication then you are obliged to provide proper attribution.<br>\nFor this, you need to cite the paper that describes the code: <br>\n* Heining, K., Kilias, A., Janz, P., Häussler, U., Kumar, A., Haas, C. A., and Egert, U.<br>\n(2019). Bursts with high and low load of epileptiform spikes show context-dependent<br>\ncorrelations in epileptic mice. eNeuro, 6(5).</p>", "license": { "id": "MIT" }, "title": "Code for detecting and classifying epileptiform activity (EA)", "notes": "This work was supported by the German Research Foundation as part of the Cluster of Excellence 'BrainLinks-BrainTools' within the framework of the German Excellence Initiative (grant number EXC 1086) and through grant no INST 39/963-1 FUGG (bwForCluster NEMO), the State of Baden-Wuerttemberg through bwHPC, and by the Federal Ministry of Education and Research (BMBF, grant number FKZ 1GQ0830 and 16PGF0070), co-financed by the European Union/European Regional Development Fund (TIGER, A31).", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4110613" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "4110614" } } ] }, "keywords": [ "epileptiform activity", "local field potential", "detection of epileptiform spikes" ], "publication_date": "2020-10-20", "creators": [ { "orcid": "0000-0003-1976-3764", "affiliation": "Biomicrotechnology, Department of Microsystems Engineering \u2013 IMTEK, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany", "name": "Heining, Katharina" } ], "access_right": "open", "resource_type": { "type": "software", "title": "Software" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.4110613", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 88 | 88 |
Downloads | 15 | 15 |
Data volume | 1.8 MB | 1.8 MB |
Unique views | 76 | 76 |
Unique downloads | 15 | 15 |