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Abstract

Despite that L1 and L2 loss functions do not represent any perceptually-related

information besides waveform-matching, these achieve remarkable results when used

to train music source separation models. Our work contributes in extending the

existing literature on loss functions for training deep learning audio models — to

keep understanding of the pros and cons of several loss functions (including: L1, L2

and perceptually motivated losses) in a standardized evaluation framework.

In this work we focus on defining an evaluation framework for a fair comparison

among losses — because we found difficult to extract conclusions out of the existing

body of literature. Generally, loss improvements are presented along with additional

model modifications (e.g. different data augmentation, or different model topology),

making it difficult to assess the loss contribution to the results. This study focus

on standardizing the evaluation process via employing the same dataset, the same

data augmentation strategy and the same model topology — while varying its loss.

The alternative losses we consider are based on cross-entropy, scale invariant SDR,

multi-resolution STFT, and phase sensitive losses among others.

Keywords: Music Source Separation; Deep Learning for Audio; Loss Functions





Chapter 1

Introduction

The process of sound mixing consists in bringing together different audio signals

(or sources) to create a mix (or mixture). Source separation is the process of un-

doing this, un-mixing it, with the goal to recover the original signals without little

or any additional information. Humans do this process seamlessly. Our brain has

the ability to focus its auditory attention on a specific component (e.g. a particular

conversation in a noisy environment such as a in a cocktail party [1]) and filters out

the rest of stimuli. Modeling this phenomenon has inspired researchers for decades,

but there is no consensus for a solution to this problem.

While source separation is also of relevance for the speech processing field, e.g., to

increase the intelligibility of the speakers, throughout our work we focus on music

source separation — where our goal is to separate the sources (or stems : the outputs

of a mix bus or the sub-mix of all the tracks corresponding to a particular instru-

ment) from the master or mixture as depicted in Figure 1. Applications range from

impacting musical genres that rely on remixing (i.e. to combine stems from different

mixtures or with newly created sources), to automatically generating karaoke tracks,

or to enabling spatial audio up-mixes of large music catalogs.

Traditionally, the popular approach to music source separation was to use matrix

decomposition algorithms like Non-negative Matrix factorization (NMF) [2] or Inde-

pendent Component Analysis (ICA) [3] on magnitude spectograms, but nowadays

1



2 Chapter 1. Introduction

deep learning dominates the field as documented in the Signal Separation Evaluation

Campaign (SiSEC) [4], which establishes a common framework for model compar-

ison [1]. In this framework, that we follow as a basis for the development of our

work, the task consists in recovering four stereo stems (’drums’, ’bass’, ’vocals’ and

the residual ’other’) from stereo mixes. Such task is formalized with the MUSDB18

dataset and the evaluation metrics as defined by the bss_eval toolkit [5].

Deep learning methods that are now widely used normally rely on supervised learn-

ing. Thus meaning that for training such models one needs to define a loss function,

which maps a set of parameter values onto a scalar value that indicates how well the

model performs by setting a distance between the model’s output and the ground

truth or target. Most successful methods presented on the SiSEC are based on

the spectral magnitude estimation through supervised learning using L1 or L2 loss

functions. So does Open-Unmix [6], the open-sourced model that will serve us as

baseline.

Figure 1: The SiSEC campaign employs the MUSDB dataset framework.
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1.1 Motivation: the L2 waveform-loss problem

In practice, the L2 loss is used in its averaged version (mean squared error, MSE)

in order to make it agnostic to signal length. Being Y the target and Ŷ the model’s

output or estimate, and being N the signal length, they can be expressed as:

MSE =
1

N

N∑
n=0

(Yn − Ŷn)2 (1.1)

However, using the MSE as a loss for training deep neural networks presents some

issues. Take, e.g., the recording of a guitar (a) from Figure 2 as a target signal, and

signals (b), (c), and (d) as hypothetical outputs from a separator model:

                                                 MSE = 0.00

a) Target signal DISTORTIONS:

                                                 MSE = 0.02

b) a + noise b - a = noise

                                                 MSE = 0.02

c) HPF(a) c - a = LPF(a)

                                                 MSE = 0.02

d) a + clicks d - a = clicks

Figure 2: Perceptually different distortions with the same MSE. HPF stands for
high-pass filter, and LPF stands for low-pass filter.
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While all three outputs are at the same MSE distance from target (a) (i.e. they

obtain the same MSE), it should be obvious to the experienced eye that all three

will be perceptually very different. It is not trivial to assert which output is more

preferable: while signals (b) and (d) would probably be less pleasant to the human

ear compared to (c), it should be possible to de-noise and de-click them in a post-

processing step, while the low frequencies filtered by a high-pass filter (HPF (a))

are irrecoverable.

Moreover, this MSE’s lack of perceptual insight can be seen from another perspec-

tive. Take now a phase inversion and an all-pass filtered version of a target (a) that

we depict in Figure 3:

                           MSE = 0.00

a) Target Signal Zoom into (a)

                           MSE = 0.15

b) Polarity inverted (a) Zoom into (b)

                           MSE = 0.03

c) All-pass filtered (a) Zoom into (c)

Figure 3: Inaudible phase distortions yield high MSEs.

As shown in the zoomed versions on the right, phase inversion (b) yields the same

waveform but with flipped polarity, while (c) presents a different shape. Thus mean-

ing that from the MSE perspective they will have different values. However, as these

signals sound the same, the loss should at least have similar values among both out-

puts, and being perceptually identical to the target, the value should additionally



1.2. Research goals 5

be very small. In reality, both outputs have different and high loss values, denoting

how flawed the MSE is from a perceptual perspective. On top of that, note that the

amplitude-distorted signal (see Figure 2 – c, with 0.02 MSE) achieves a lower loss

than the perceptually identical polarity inverted (see Figure 2 – b, with 0.15 MSE).

Besides, we want to remark that such analysis could be easily extrapolated from the

L1 waveform-loss (mean absolute error, MAE) case to the spectral domain L1 and

L2 losses. Throughout the rest of the document, specially in Section 2, we will bring

additional insights and discussion on how to address some of the aforementioned

problems.

In the light of the above, regression losses like L1 and L2 present the problem that

they are not necessarily correlated with human perception and therefore they could

provide optimization paths that are not perceptually meaningful, constituting one

major obstacle for the development of deep learning models for audio processing.

1.2 Research goals

Concluding this introduction, it is important to point out that most successful deep

learning methods are based on optimizing regression losses with the intrinsic issues

we just highlighted above. For this reason, and given that we might have identi-

fied an opportunity to improve the performance and generalization of music source

separation models, we are interested in studying the different losses that have been

proposed in the literature. With this goal in mind, and considering how sensible

deep learning models are to their loss functions, our intention is:

• To review and summarize the different losses that have been proposed for

training deep learning models for processing audio.

• To investigate the performance of those for the music source separation task.

Furthermore, we are not aware of any empirical study that consistently evaluates

the losses landscape for music source separation. Most research articles focus on
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proposing a new loss or an architecture, and only benchmark against a handful

of models that might even consider different implementations and novel data aug-

mentation setups. Throughout our work, we will focus on a reference open-source

implementation, OpenUnmix [6], and simply elaborate on top of it to consistently

benchmark an extensive set of losses. In short, our aim is:

• To adapt Open-Unmix model to consistently benchmark audio processing

losses.

• To run an empirical study of the most promising losses we identify in the

literature.

1.3 Structure of the Report

Once presented the general scope of this work, the rest of this thesis is structured

into three blocks:

• In Chapter 2 we list the the different audio loss function we have identified in

the literature that could be used for training music source separation models,

while we describe and formalize them.

• In Chapter 3 we report our methodology: the baseline model and our adapta-

tion (i.e. a modified Open-Unmix trained over the MUSDB dataset).

• Finally, in Chapters 4 and 5 we present and discuss the results, and draw some

conclusions out of them.



Chapter 2

Losses for audio processing

Researchers have proposed several alternatives to L2 that can be found in recent

literature. Before going into the details for each particular loss, we provide a glance

to the state of the art in the following taxonomy:

LOSSES FOR AUDIO PROCESSING

SPECTROGRAM BASED

L1, L2 ON MAGNITUDES

L1, L2 ON MASKS

DISSIMILARITY

CROSS-ENTROPY

TIME DOMAIN

L1, L2 ON WAVEFORMS

LOG(L1), LOG(L2)

SCALE-INVARIANT SDR

ADVERSARIAL

WASSERSTEIN DISTANCE

DEEP FEATURES

VGG-ISH

JND-ISH

FRÉCHET AUDIO DISTANCE

MODELS OF
NON-DIFFERENTIABLE

LOSSES

SIMILARITY

SNR-PSA

SCALE-DEPENDANT SDR

MULTI-RESOLUTION STFT

Figure 4: Taxonomy for the losses found in our literature review.
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8 Chapter 2. Losses for audio processing

We can cluster the losses into four categories. First and foremost, traditional spec-

trogram losses may be computed with an spectral source separator such as Open-

Unmix [6]. Next, performing the ISTFT inside the model additionally allows us

to implement losses that are normally used in time domain models. Besides, we

can adapt the whole training loop from supervised learning into an semi-supervised

approach with adversarial losses. Lastly, deep features might be incorporated into

the supervised loop through the use of pre-trained models’ embeddings. This tax-

onomy categorization also depends on the point at which each loss is computed in

the model’s pipeline:

MIXTURES

vocals

drums

bass

other

ABS NET
Apply

Estimated
Mask

INCORPORATE
PHASE,

NORMALIZE

ISTFT

X |X|

Mask Loss
Compute

Ideal
Mask

STFT

STFT

ABS

Magnitude
Loss

SPECTROGRAM LOSSES

Time
Loss

PRE-TRAINED MODELS

Deep Feature Loss

UNPARALLEL DATA
Adversarial

Loss

PARALLEL DATA

+
Y

Y

X
~y

^

^

y

|Y|

M

M

~

~

Figure 5: Measurement point for each loss category of our taxonomy in a spectral
separator.

2.1 Spectrogram-based losses

Given the mixture xt of N samples with STFT (x) = Xn,ω, and ground truth source

y with its corresponding Y for k sources, the first category from the taxonomy

comprehends all the losses that follow the traditional approach: to estimate |Yn,k,ω|

with a neural network obtaining Ỹn,k,ω and thus ignoring phase. During inference,

the reconstructed source uses the mixture phase. Although the most straightforward

approach is to directly apply it like yt,k = ISTFT (Ỹn,k,ω(cos( 6 Xn,ω) + jsin(6 Xn,ω)),
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one can additionally ensure that all the estimates add up to the mixture in what

is known as softmasking [7]: normalizing the particular estimate with the energy of

all estimates obtaining ỹk = ISTFT (Xn,ωỸn,k,ω/
∑k

0 Ỹn,k,ω) and incorporating the

mixture phase at the same time. Regardless how the final mask (and therefore the

mixture phase) is applied, separator models may also yield magnitude masks M̃

instead of magnitude estimates Ỹ as has been shown in Figure 5.

2.1.1 L1 / L2 on magnitude spectrograms

This is the most straightforward approach: to measure L1 or L2 norms between

input-target magnitude spectrograms. Both functions have already been described

for the general case in Equation 1.1. Extending them to multiple sources leads to:

L1freq =
1

NKΩ

∑
n,k,ω

|Yn,k,ω − Ỹn,k,ω|

L2freq =
1

NKΩ

∑
n,k,ω

|Yn,k,ω − Ỹn,k,ω|2 (2.1)

2.1.2 L1 / L2 on spectrogram-masks

Returning to Figure 5, the output of the NET (which stands for our separator) may

be a real mask M̃ . Therefore, we can measure the error at this point in the pipeline

just by re-computing the ideal masks from our target magnitudes. We ensure that

they add to unity in the following way:

Mn,k,ω =
|Yn,k,ω|∑
k |Yn,k,ω|

(2.2)

Once with our target masks, we can bypass the mask application from Figure 5 and

measure the L1 and L2 norms between M and M̃ :

MAEmask =
1

NKΩ

∑
n,k,ω

|Mn,k,ω − M̃n,k,ω|

MSEmask =
1

NKΩ

∑
n,k,ω

|Mn,k,ω − M̃n,k,ω|2 (2.3)
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Optimizing the mask directly is proposed in works like [8].

2.1.3 L2 + Dissimilarity loss

While the above encourages the model to produce outputs similar to the targets, BSS

is prone to suffer from interference between predictions (i.e. remnant components of

the mixture remaining present in the separated estimates). To mitigate this, in [9]

Huang et al. add a dissimilarity term that additionally encourages each prediction

to be different from the rest of estimates, by adding an L2 norm for each additional

source. In other words, in a particular source separation we would subtract the

distance between the source estimate and the other estimates to the distance between

the source estimate and the target. Extended to K sources as in [10] and with

experimentally found γ coefficient, dissimilarity L2 can be expressed as:

Ldissim =
1

NKΩ

∑
n,k,ω

(L2− dissimilarity)

=
1

NKΩ

∑
n,k,ω

((Ỹn,k,ω − Yn,k,ω)2 − γ
∑
k̃

|Ỹn,k,ω − Yn,k̃ 6=k,ω|
2) (2.4)

2.1.4 Cross-entropy loss

Besides, in [11] Lin et al. propose to use Binary Cross-Entropy (BCE) between

output and target Ideal Binary Masks for singing voice separation, optimizing the

average probability error for each T-F bin. Their work is based on pixel-wise classifi-

cation for computer vision [12], and obtains slightly worse performance than SiSEC’s

UHL2 (Open-Unmix’s predecessor). As they do not provide an ablation study on

the loss, its impact is still unclear. They additionally study the use of cross-entropy

as a regression loss by applying it to the ideal ratio masks described above, but

report worse results than with IBMs. Given the ideal binary mask Bn,k,ω and the
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network prediction B̃n,k,ω, our loss is the Binary Cross Entropy:

LBCE =
1

NKΩ

∑
n,k,ω

(Bn,k,ω(−log(B̃n,k,ω))+

(1−Bn,k,ω)(−log(1− B̃n,k,ω))) (2.5)

As here we are dealing with multiple-sources separation, we will use Categorical

Cross-Entropy instead of Binary Cross-Entropy, better suited for multi-class classi-

fications. With Bn,ω as the binary mask of all sources:

LCE =
1

NΩ
−
∑
n,ω

Bn,ωlog(B̃n,ω) (2.6)

For the sake of completeness, Cross-Entropy is also used in [13], where the outputs of

BLSTM separators are fed to audio classifiers whose CE is used for the optimization

of the separators. In this manner, sources are not restricted to the SiSEC’s paradigm

because targets become weak labels (clip and frame-level annotations of mixtures)

instead of spectrograms for each source.

2.1.5 Phase-Aware Signal-to-Noise Ratio (SNR-PSA) loss

Moreover, in [14], Erdogan et al. propose to incorporate phase information into

the loss for a speech enhancement task. The idea is that the magnitude estimates

compensate for the errors that will later be introduced due to using the mixture

phase by attenuating the amplitude of the most sensible bins (i.e. dimming regions

where phase distortion of the separations would be less desirable than silence). This

is attempted by optimizing a Phase-Sensitive Spectrum Approximation (PSA) of

the magnitude with the following expression:
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Y PSA
n,k,ω = |Yn,k,ω|cos(6 Xn,ω − 6 Yn,k,ω) (2.7)

LPSA =
1

NKΩ

∑
n,k,ω

|Ỹn,k,ω − Y PSA
n,k,ω |2 (2.8)

Given that the separation error can be seen as noise, Erdogan et al. propose to

combine PSA with the common Signal to Noise Ratio in [15], where Phase-Aware

Signal-to-Noise Ratio (SNR-PSA) is proposed. As they already compare their ap-

proach to directly predicting complex Ideal Ratio Masks (cIRM) [8] here we will not

further consider them. SNR-PSA loss is saturated with A for avoiding the model

to focus on easy utterances, setting it at 20dB for a speech enhancement task. This

loss also uses power-law compression in order to mimic human perception as in [16].

With 0.5 power-law compression, SNR-PSA can be expressed as:

SNR′PSAk = −10log(

∑
n,ω Y

PSA
n,k,ω∑

n,ω(
√
Ỹn,k,ω −

√
Y PSA
n,k,ω )2

)

SNRPSA =
1

K

∑
k

(A tanh(SNR′PSA/A)) (2.9)

2.2 Time-domain losses

Another way to circumvent the lack of phase estimation than cIRM/PSA is to di-

rectly estimate the waveforms. In fact, in [17] Défossez et al. propose Demucs,

which consists in a residual-connected convolutional encoder-decoder with BLSTMs

at its bottleneck which, despite using L1 loss, obtains better objective and sub-

jective scores than Open-unmix [6], being the first time-domain model to outper-

form spectrogram-based approaches and therefore becoming the new SOTA in music

source separation. However, these losses may also benefit spectral models in the

same way than PSA does, i.e. by trying to compensate in the magnitude estimates

for the distortion introduced when using the mixture phase.
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2.2.1 L1 / L2 on waveforms

To define this loss used in works like [17], we simply swap the spectral components

from Equation 2.1 for their respective temporal counterparts as well as the STFT

frames axis n for the sample axis t:

L1time =
1

TK

∑
t,k

|yt,k − ỹt,k|

L2time =
1

TK

∑
t,k

|yt,k − ỹt,k|2 (2.10)

2.2.2 Scale-Invariant Signal to Distortion Ratio (SI-SDR)

Although Source to Distortion Rartio (SDR) [5] is the most common evaluation

metric for music source separation, in [18] Roux et al. point out that it has some

potential problems, as the fact that "obliterating some frequencies setting them to 0

could absurdly still result in near infinite SDR". In addition, making a differentiable

adaptation from it is far from being trivial, making it unsuitable as a loos. Their

proposal is a simplified yet more robust (despite allowing scaling) version of SDR

calculated in its expanded form as:

SI-SDR = 10log10(
| ỹ

T
t,kyt,k

|yt,k|2
yt,k|2

| ỹ
T
t,kyt,k

|yt,k|2
yt,k − ỹt,k|2

) (2.11)

As Scale-Invariant-SDR is more straightforward and less computationally expensive,

in the present work we focus on SI-SDR as loss and leave SDR as an evaluation

metric in order to make results comparable to SiSEC’s. So do Conv-Tasnet [19] and

Kim & El-Khamy in [20], where normalized L2 or Mean-Squared Error (MSE) is

considered again to be sub-optimal for SDR maximization in a speech enhancement

task, proposing to directly use SI-SDR on top of speech-tailored perceptual metrics

like Perceptual Evaluation of Speech Quality (PESQ) and Short-time Objective

Intelligibility (STOI) in the latter. Likewise, Kolbæk et al. [21] suggest SI-SDR
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as the objectively best loss in a study similar to ours but for monoaural time-

domain speech enhancement. Despite not appearing in the literature, the loss can

be adapted to spectral domain just by concatenating the frequency components of

the magnitudes Yn,k,ω and Ỹn,k,ω into Ynω,k and Ỹnω,k and substituting them for yt,k

and ỹt,k in Equation 2.11.

Returning to the original work, Roux et al. also suggest a scale-dependant al-

ternative using Scale-Dependant-SDR, which is sensitive to both up-scaling and

down-scaling, combining a the traditional Signal to Noise Ratio with a Downscale-

Dependent Signal to Distortion Ration (DsDSDR):

SNR = 10log10(
|yt,k|2

|yt,k − ỹt,k|2
)

Ldown = SNR + 10log10(
ỹTt,kyt,k

|yt,k|2
)2

SDSDR = min(SNR,Ldown) (2.12)

2.2.3 LOG-L1 and LOG-L2 on waveforms

However, in [22] Heitkaemper et al. describe how SI-SDR results in a more straight-

forward logarithmic version of the Mean Squared Error when all terms not dependent

on learnable parameters are removed:

SI-SDR = LOG-L2 = 10
1

K

∑
k

log10
∑
t

|yt,k − ỹt,k|2 (2.13)

The main idea behind compressing the loss with a logarithmic function is that distor-

tions with low amplitude may be as perceptually unpleasant as high amplitude ones.

With compression, the model is encouraged to focus on low amplitude distortions

as well. Using L1 instead of L2 yields:

LOG-L1 = 10
1

K

∑
k

log10
∑
t

|yt,k − ŷt,k| (2.14)
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Again, as in the SI-SDR case, adapting it to spectral domain is very straightforward:

LOGL1mag =
10

K

∑
k

log10
∑
n,ω

|Yn,ω − Ỹn,ω|

LOGL2mag =
10

K

∑
k

log10
∑
n,ω

|Yn,ω − Ỹn,ω|2 (2.15)

2.2.4 Multi-resolution STFT

The last strictly time domain loss in the taxonomy is the Multi-resolution STFT loss

LMRS presented in [23], where Yamamoto et al. propose to optimize speech synthesis

with the combination of several calculations of two losses: spectral convergence

Lsc and log STFT magnitude Lmag, which is the spectral version of LOG-L1 loss

described above. Firstly, for the single resolution we calculate LSRS:

LSRS = Lsc + Lmag

Lsc =

√∑
t,k |STFT (yt,k)− STFT (ỹt,k)|2√∑

t,k STFT (Yt,k)2
(2.16)

Lmag =
1

TK

∑
t,k

(|log10STFT (yt,k)− log10STFT (ỹt,k)|) (2.17)

The point of introducing the STFT operation into the loss is that, given its the

intrinsic time-frequency resolution trade-off, we can average several measures with

different STFT parameters. Let O be the number of different parameters (i.e. FFT

size, window size and or overlap), the final Multi-Resolution STFT loss is the average

of LSRS at every resolution:

LMRS =
1

O

∑
o

L
(o)
SRS (2.18)

In their speech synthesis task, LMRS produces Mean Opinion Score gains between

+0.33 and +2.7 points depending on the model they apply it to.
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2.2.5 Similarity loss

Similarity consists in the opposite from dissimilarity and can be used in systems that

follow an auto-encoder structure and when mini-batch training is used: as the batch

contains several utterances of the same source, one can encourage the estimates to

be similar to other targets from that batch. For example, on top of encouraging

vocals to be different to the other instruments, we can additionally encourage them

to be similar to the rest of vocals from the batch. The idea is proposed by Samuel &

Ganeshan in [24], and is put into practice by encouraging embeddings of the same

instruments to be close while discouraging similarity of embeddings from different

instruments. Given batch dimension b, and the separated latent representation hb,k,

the loss can be expressed as:

Lsim,dissim =
1

BNKΩ

∑
n,k,ω,b

(L2− dissimilarity + similarity)

=
1

BNKΩ

∑
n,k,ω,b

((Ỹn,k,ω,b − Yn,k,ω,b)2 − γ
∑
k̂

abs(hb,k) · abs(hb,k̂ 6=k)
|hb,k||hb,k̂ 6=k|

(2.19)

+ε
∑
b̂

hb,k · hb̂ 6=b,k
|hb,k||hb̂ 6=b,k|

) (2.20)

As the loss per se does not care about the input features, we can put it in both

spectral and temporal categories of our taxonomy. In fact, Samuel & Ganeshan

combine temporal and STFT magnitude features that are encoded into a latent

space by their model.

2.3 Adversarial loss

Our third loss category contains a single particular case: the adversarial loss. The

middle ground between using paired multi-track data as in SiSEC and using mixtures

alone with their respective labels as in [13] is presented in [25], were an adversarial

semi-supervised framework is proposed for singing voice separation. Stoller et al.

suggest that a source separator may play the generator role of a Wasserstein Gener-

ative Adversarial Network with Gradient Penalty (WGAN-GP) [26] as depicted in
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Figure 6. In this manner, nonparallel data (mixtures without their corresponding

stems and vice versa) can be included in the supervised loop, alleviating the scarcity

of multi-track data. As shown in [26], WGAN-GP mitigates some training instability

issues from vanilla WGAN, which at the time tackled regular GANs’ Jensen-Shanon

Divergence problems.

Parallel data

SOURCE 
y

MIXTURE
x

SEPARATOR
f

X

UNPAIRED SOURCE

CRITIC
D

        
Y

     Y

Real? Separated?UNPAIRED MIXTURE

~

^

^

     X

Figure 6: Adversarial Source Separation diagram.

In order to estimate the Wasserstein divergence, the critic is updated five times per

separator step so two optimizers are needed. With α, β and γ as hyperparame-

ters, with ε randomly sampled from U [0, 1] and p̂ ← εŶt,f + (1 − ε)f(X̂n,ω), the

semi-supervised loss for a single source can be expressed as the combination of the

following elements:

• the L2 norm between parallel output and target

• the Wasserstein Distance between fake and real distributions

• a gradient penalty for ensuring the Lipschitz constraint

• an additive penalty which encourages all nonparallel separations to add up to

their mixture
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Each of these items correspond to a line of the overall semi-supervised loss equation:

Ladv =
1

NΩ

∑
n,ω,k

(|f(Xn,ω,k)− Yn,ω,k|2

+α(D(f(X̂n,ω,k))−D(Ŷn,ω,k))

+β(| 5p̂ D(p̂)|2 − 1, 0)2

+γ|
K∑
k=1

fk(X̂n,ω,k)− X̂t,ω,k|2) (2.21)

Stoller et al. perform an ablation study on the semi-supervised part, reporting

1, 02dB of SDR increment in singing voice separation on the iKala dataset [27], but

no SiSEC-like results are provided as their model has not been extended to the multi-

source case. Besides, the impact of the adversarial loss without using additional

nonparallel data (i.e. using the model topology as a kind of data augmentation)

remains unknown.

2.4 Deep feature losses

The last loss category from the taxonomy comprehends the losses that use pre-

trained external models, which had already shown to be valuable when modeling

human perception in the Computer Vision field [28], and which have recently been

explored for audio. As depicted below, each loss uses a particular pre-trained model

φ and treats its outputs of the j-th layer in a particular way as well.

2.4.1 VGG-ish loss

On the one hand, the distance between a 16-layer Visual-Geometry-Group (VGG)

[29] network’s embeddings pretrained on ImageNet dataset is used in [30] by Sahai

et al. as a loss function for music separation. In short, LV GG loss is the weighted

combination of Lrelu2_2
feat , Lrelu1_2

sty , Lrelu2_2
sty , Lrelu3_3

sty and Lrelu4_3
sty . Firstly, as described

in [31], feature reconstruction loss is extracted from the j-th layer of the VGG φ
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Figure 7: Deep Feature Losses pipeline.

through the euclidean distance between activations. If j is a convolutional layer, the

output will be a feature map of shape Cj ×Hj ×Wj:

Lφ,jfeat(Ỹn,ω,k, Yn,ω,k) =
1

CjHjWj

|φj(Ỹn,ω,k)− φj(Yn,ω,k)|2 (2.22)

Next, once that φj(Yt,ω,k) is reshaped from the form Cj × Hj ×Wj to ψY = Cj ×

HjWj, style reconstruction loss is computed through Frobenius norm as:

Lφ,jsty(Ỹt,ω,k, Yt,ω,k) = |
ψỸ ψ

T
Ỹ

Cj,ỸHj,ỸWj,Ỹ

− ψY ψ
T
Y

Cj,YHj,YWj,Y

|2F (2.23)

Finally, the weights for each of the five losses should be determined empirically. It

is important to point out that this work reports improvements on audio processing

performance despite using a model pre-trained on image classification.

2.4.2 JND-ish loss

On the other hand, in [32] Manocha et al. approach the L2 lack of perceptual insight

by directly training a network on real human judgments for speech enhancement.

After collecting a dataset of human Just Noticeable Differences for linear, reverb

and compression perturbations (i.e. h labels on whether yt and ỹt sound the same),

distance model LJND is optimized by a small classifier G through Binary Cross
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Entropy loss introduced in Equation 2.5:

L(G,D) = BCE(G(LJND(yt, ỹt)), h) (2.24)

While no details on G are given, LJND consists of fourteen 3x1 layers trained on

22k pairs of human judgments for 1000 epochs. The 95.3% of subjective evaluations

show LJND to be better than a VGG-ish baseline.

2.4.3 Fréchet Audio Distance

Furthermore, in [33] Kilgour et al. propose Fréchet Audio Distance, a reference-free

evaluation metric that computes the distance between statics of VGG embeddings

when our model’s output is inferred and the embeddings when a large database of

clean music is classified, showing better correlation with MOS than SDR. In this

case, the layer prior to the final one is taken as the embedding and inference is done

with the MagnaTagATune [34] dataset z. Given tr as the trace of a matrix, FAD is

calculated with the embeddings’ statistics as follows:

FAD(φz, φỹ) = |µz − µỹ|2 + tr(Σz + Σỹ − 2
√

ΣzΣỹ) (2.25)

2.4.4 Models of non-differentiable losses

Last, but not least, in [35] Elbaz et al. propose to model non-differentiable audio

metrics with a neural network, obtaining a differentiable perceptual metric. They

start by training Wavenet [36] on time-domain chunks with the respective Per-

ceptual Evaluation Speech Quality labels that have been computed offline. Once

pre-trained, Wavenet achieves 81% correlation with PESQ [37], being able to serve

as an approximation of a perceptual metric suitable for optimization. Given the

pre-trained model of a non-differentiable loss W :

Lnondiff =
1

K

∑
k

W (yt,k, ỹt,k) (2.26)
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Methods and materials

Once described all the losses we have found in the literature, in this chapter we

provide an overview of Open-Unmix (our baseline spectral model), the datasets we

use and the experimental framework.

3.1 Open-Unmix

As explained in previous chapters, using Open-Unmix [6] as baseline implies that

the present benchmark is done under optimal circumstances, with the best publicly

available source separator. Open-Unmix can be considered the best performing

system from SiSEC [4], tied with non-public systems like TAK1. In the present

section, we will describe the Open-Unmix (UMX) topology and its main components.

Firstly, because audio is indeed a sequence, UMX is a Recurrent Neural Network,

which, from [38], "is suited especially well for machine perception tasks, where the

raw underlying features are not individually interpretable". The main idea behind

them is simple: adding a loop in the network should allow knowledge to persist. If

we imagine how this loop unfolds over time in different states, we obtain Figure 8,

where a network cell A receives an input xt and produces an output ht that can be

decomposed in t time steps, with each instance passing the information to the next

one. Early RNN designs suffer from difficulty of learning long-range dependencies

21
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Figure 8: RNN scheme, courtesy of Cristopher Olah.

[39]. In order to address this issue, in 1997 Hochreiter et al. proposed the Long

Short-Term Memory [40], specifically designed to learn long-term dependencies by

using a cell state, a stable memory channel that gets modified through time by

structures (additional neural network layers) called gates. This is depicted in Figure

9, where it is shown that the LSTM cell uses the previous output ht−1, the current

input xt and the information in the cell state (the upper path) to compute the

current output ht, while it uses the sub-layers (the yellow squares in the diagram that

use sigmoid and hyperbolic tangent activations) to regulate which old information

from the cell state we forget (the forget gate) and which new information we store

in it (the input gate). The current output is a tanh-filtered version of the cell

state combined with some information from the previous output and the current

input by the output gate. If we combine two LSTMs, one modeling the sequence

from beginning to end and another one doing it from end to beginning, we obtain

the Bidirectional Long Short-Term Memory (BLSTM) unit, the core component of

UMX, with better temporal modeling capabilities than uni-directional LSTMs at

the expense of the ability of running in real time.

Figure 9: LSTM scheme, courtesy of Cristopher Olah.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The rest of layers present in UMX comprise the Fully Connected Layer (the core of

the Multi-Layer Perceptron), the Rectified Linear Unit (ReLU) [41] and traditional

Hyperbolic Tangent (tanh) activations to obtain non-linearity capabilities, the input

scaler that standardizes inputs to match their scale to the randomly initialized small

weights, and Batch Normalization [42], which applies the same concept from the

input scaler to the inner layers of the model. The combination of these elements

constitutes the following UMX’s pipeline:
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Figure 10: UMX topology.

In the first place, as we have shown above in Figure 5, UMX performs the Short-Time

Fourier Transform operation to the mixture and target sources’ waveforms, which

follow [16, 2, 6 · 44100] shape corresponding to 16 utterances per batch, 2 channels

as we are dealing with stereo signals, and randomly selected 6-seconds-long chunks

of PCM audio sampled at 44100kHz. STFT is applied with an FFT size of 4096

and a hop size of 1024 samples, yielding 259 temporal frames and 2049 frequency
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bins. By the complex norm and angle functions, magnitudes Yn,k,ω and Xn,k,ω are

extracted, as well as 6 Xn,k,ω which will be used when doing inference.

Following, UMX internally filters out the upper 562 frequency bins, as they contain

no information due to the dataset being encoded with Advanced Audio Coding

(AAC) compression. Prior to the start of the training process, bin-wise mean and

standard deviations of the whole training set are computed and used to initialize

the input scaler block (which subtracts mean and divides by standard deviation),

while the output scaler is initialized to unity with ones. These scaler arrays have

gradients, in order to let the model fine-tune the initial statistics.

Thirdly, the cropped mixture magnitude is encoded with a Fully-connected layer

with shape [4144, 512] corresponding to the number of bins times the channels, and

to an experimentally set hidden size hs of 512, followed by a batch normalization

layer with trainable parameters and hyperbolic tangent activation. The batch nor-

malization layer’s output is reshaped into the frames, batch, and hidden size dimen-

sions, and concatenated to the output of the model’s core, comprised of a three-layer

Bidirectional Long Short-Term Memory block of hs/2. The BLSTM’s output is con-

catenated with the input in a residual connection or identity shortcut introduced in

[43] with the premise that when failing to extract a feature, the newtork should at

least be able to learn the identity avoiding degrading the performance when using

deep networks. This concatenation yields 1024 features, half corresponding to the

BLSTMs output and half to the BLSTM’s input. Again, the network uses the com-

bination of fully-connected layer, batch normalization and activation, but this time

twice and using ReLU instead of hyperbolic tangent, obtaining the estimated mask

in standardized form.

Lastly, the output scaler will learn to de-standardize the masks in order that, once

applied to the mixture spectrogram, their range is comparable to the target spec-

trograms. Given that masks are defined as shown in Equation 2.3, applying them is

as easy as multiplying to the mixture spectrogram.
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3.1.1 Baseline’s implementation details

On top of all the above, UMX additionally uses several learning strategies. On the

one hand, at training time, UMX uses two simple data augmentation transformers

in order to fight over-fitting: swapping the sources’ left and right channels and

applying a random gain to each track before adding them into the mixture creating

a custom mix. Additionally, it randomly selects the chunks from each track, making

each epoch different. Gradient descent is optimized using Adam with 10−5 weight

decay [44]. Initial learning rate is set to 10−3 and decreased with 0.3 factor when the

validation loss does not decrease for 80 epochs, and early stopping is applied after

140 epochs without improvement. The trained model will be the one corresponding

to the epoch with lower validation loss.

On the other hand, at testing time, a Multichannel Wiener Filter (MWF) is applied

in order exploit the spatial information. Firstly, softmasking is optionally re-applied

so all estimates add up to the mixture as previously shown in Equation 2.3, but

this time filtering from the complex STFT. This may be skipped in case our model

already provides good initial estimates by directly using the mixture phase with

the estimated magnitudes. Next, Expectation Maximization algorithm is used to

refine the estimates. The main idea behind it is that each source follows a Gaussian

distribution in the multichannel space.

Left
Channel

Right
Channelvocals

drums
bass
other

Figure 11: The bin-wise multichannel gaussian model.
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The distribution parameters for each source are the magnitude or power spectral

density and the "stereo signature" which corresponds to the covariance matrices. As

both can be computed from UMX’s output, refining may be obtained through the

Expectation Maximization (EM) algorithm [45], which is a soft-clustering algorithm

that will separate each source’s power spectral density and covariance matrices from

the mixture spatial distribution. In other words, given that our estimate belongs to

the mixture and that UMX provides an initial source estimate, we can re-extract

them from the mixture in a more spatially plausible way. Once EM provides new

mean and covariance matrices, separations are re-computed again with the Wiener

Filter, this time using the refined magnitudes.

3.2 Materials: MUSDB18 and MUSEVAL

As we have previously introduced, the main dataset we have used is MUSDB18

[46], which comprises DSD100 and the MedleyDB datasets compressed into AAC

at 256kbps and encapsulated in STEMS mp4 format. From the 150 stems, the

dataset splits into 100 tracks for training and 50 for validation. The authors also

provide MUSDB18-HQ, a full-bandwith version directly available in WAV format,

but here we will use the standard version in order to be comparable to participants

from SiSEC 2018 [4]. Because online decompression constitutes a bottleneck during

training, we have used the provided musdbconvert script to store the decompressed

files in disk. UMX’s default data handlers (and therefore ours) are using the musdb

parser.

The present work builds upon the Pytorch version of UMX, written in Python and

using Pytorch, NumPy and Scikit-Learn packages. On top of this, our work addition-

ally uses Torchaudio’s invertible and GPU-capable STFT. The code corresponding

to the spectral and temporal losses is available here.

Despite, as introduced in Section 2.2.2, Source to Distortion Ratio (SDR) [5] presents

some issues, it is still suited for assessing the performance of source separator models,

as it decomposes the SNR into three categories: artifacts, noise and interferences.

https://github.com/sigsep/open-unmix-pytorch
https://github.com/enricguso/UMX_loss_functions
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This matches the kind of compromises found in source separators, quantifying the

balance of how much instrument isolation we obtain and at which price (i.e. how

much artifacts are introduced). In its first step, SDR projects the noise into the

following energies:

ỹ = y + einterference + enoise + eartifacts (3.1)

Those are used to build Source to Interferences Ratio (SIR) and Source to Artifacts

Ratio, which combined with Sources to Noise Ratio produce the SDR:

SIR = 10 log10
|y|2

|einterf |2

SNR = 10 log10
|y + einterf |2

|enoise|2

SAR = 10 log10
|y + einterf + enoise|2

|eartif |2

SDR = 10 log10
|y|2

|einterf + enoise + eartif |2
(3.2)

Again, so as we are comparable with SiSEC systems, here we use the SDR version

of BSSEval v3. From now on, SDR results will be median of frames and median of

tracks for each instrument, and average among instruments’ scores when providing

a single value. Hence, in the present work, the evaluation relies on SDR scores and

a subjective critical listen.

3.3 Our adaptation for joint estimation

Some of the losses described in Chapter 2 require some modifications to the original

model. Specifically, mask losses from Section 2.1.2 need to compare the masks that

are internally applied in the original UMX. To this purpose, in our adaptation the

model outputs the mask before applying it, which is done in the training and testing

loops.

The first test we have done while preparing this benchmark is to assess the impact

of the MWF and an attempt to replace it for a softmax final layer (which makes
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elements to lie in the [0,1] range and to sum to 1) in order to obtain a truly end-

to-end model. As shown in Table 2, softmasking during training (i.e. softmax) only

helps when no MWF is used, but still performs worse than original UMX version.

Table 1: Ablation on the Multichannel Wiener Filter (SDR).

vocals drums bass other

UMX + MWF 6,320 5,730 5,230 4,020

UMX - MWF 5,876 4,952 4,238 2,904

UMX + softmax - MWF 5,601 5,662 4,713 4,051

UMX + softmax + MWF 5,568 5,492 4,692 3,729

Secondly, because Dissimilarity from Section 2.1.3 requires all targets to be fed to

the GPU, we have explored the possibility of jointly estimating all sources using a

single model (jUMX) as we depict in Figure 12. To make the number of parameters

comparable to using four separate models as in the original UMX, we have doubled

the hidden size of the model, and split the final fully connected layer into the four

outputs.

In addition, because the other class is the residual from vocals, drums and bass, we

have tried to jointly training just these three classes and to build other from the

mixture’s residual, which also results in poorer performance:

Table 2: Joint UMX and residual training (SDR).

modelhs vocals drums bass other

UMX512 6,320 5,730 5,230 4,020

jUMX512 6,257 5,671 5,137 4,399

residual1024 5,466 5,196 4,284 2,653

jUMX1024 6,399 5,861 5,278 4,573

Finally, the initialization of the input scaler needs to be adapted for the SNR-

PSA loss from Section 2.1.5. Due to the loss operating in a power-law compressed

domain, uncompressed statistics generate an exploding gradient problem during the



3.3. Our adaptation for joint estimation 29

259x16x2x2049

mixture 
spectrogram

input 
scaler

4144x1024

fully
connected

layer

259x16x1024

cat

batchnorm 
+

tanh   259x16x2048BL
ST

M

259x16x2x1487
crop HF

BL
ST

M

BL
ST

M
4144x1024

fully
connected

layer

batchnorm 
+

relu

[frames, batch, 
channels, bins]

initialize

dataset
statistics

fully
connected

layer

output
scaler

vocals mask
drums mask
bass mask
other mask

batchnorm
+

relu

 259x16x2x2049

Figure 12: Jointly training UMX (jUMX) pipeline.

first iterations. In order to avoid this, we re-compute the statistics but with the

power-law applied to the spectrograms.

In short, our adaptation jointly estimates the four sources using twice the hidden

size and keeping the MWF, obtaining objective scores comparable to original UMX.

3.3.1 Hyperparameter selection

As in [21], each loss presents a varying sensitivity to the choice of learning rate.

We have tested learning the following learning rates: 103, 5 · 103, 104, 5 · 104 and

105. In most cases, the the default learning rate of 10−3 performs the best, leaving

the tuning to the learning rate scheduler. In some exceptions, we have observed

unstable training during the first epochs, requiring a smaller initial learning rate:
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Table 3: Learning rates.

default L2mask L1time L2time

10−3 10−4 10−5 10−5

Regarding the rest of hyperparameters, we have used γ = {0.05, 0.1, 0.15} for the

Dissimilarity loss, with 0.05 performing better, and added 2048 and 1024 STFTs

with 512 and 256 hop sizes respectively in the Multi-Resolution STFT case.
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Results and discussion

Here we provide results for the first two categories from our taxonomy (i.e. spectral

and temporal losses) and leave the Adversarial and Deep Feature losses for future

work.

In the following we detail (see instrument-wise scores as reported in Table 4) and

discuss the obtained results. An overall depiction of the average SDR scores (the

higher, the better) we obtained for the studied losses is depicted in Figure 13.

Figure 13: Results, average SDR among instruments. Spectral losses are depicted
in blue, and temporal losses are in green. The higher the SDR, the better.

31
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Table 4: SDR Results.
vocals drums bass other average

UMXpaper 6.32 5.73 5.23 4.02 5.33

L2freq 6.4 5.86 5.28 4.57 5.53

L1freq 5.95 5.58 4.24 3.90 4.92

L2mask 5.19 4.14 3.08 2.74 3.79

L1mask 3.72 3.29 1.07 2.15 2.55

L1time 4.79 4.33 3.26 2.92 3.82

L2time 4.55 4.25 3.06 2.91 3.69

SISDRtime 6.24 5.72 5.04 4.35 5.34

SISDRfreq 6.29 6.09 5.49 4.47 5.58

SDSDRtime 5.90 5.75 5.34 4.37 5.34

CrossEntropy 4.32 3.53 2.26 2.72 3.21

log(L1time) 5.99 5.91 5.15 4.12 5.29

log(L2time) 5.95 5.73 4.44 3.79 4.98

log(L1freq) 6.42 6.25 5.25 4.41 5.58

log(L2freq) 6.51 5.82 5.10 4.33 5.44

PSA 5.87 5.79 4.65 4.08 5.10

SNR(PSA) 5.53 5.25 4.45 3.88 4.78

L2freq +Dissimilarityfreq 6.04 5.66 5.17 4.38 5.31

MultiSTFT 5.82 5.11 4.48 3.57 4.75

4.1 Spectral losses

First, some of the worst performances are obtained when optimizing the (i) masks

(i.e. in L2mask, L1mask) and with (ii) cross-entropy based losses. We argue that

this could be caused because the problem is ill-defined when the mixture presents

silences. In those cases, any set of masks is valid, hindering the optimization process.

Second, dimming amplitudes to mitigate phase distortions (Phase-Sensitive Am-

plitude estimation, also known as PSA) does not seem to work for music source
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separation — while it has shown to be effective for speech source separation. Our

hypothesis is that in music tracks there is much more time-frequency overlap than

in the speech separation task. In addition, when comparing SNR-PSA and PSA we

note that SNR-PSA achieves worse results — thus suggesting that the SNR-PSA

modifications applied to PSA (power-law compression, signal-to-noise ratio and hy-

perbolic tangent clipping) don’t generalize well for music source separation [15].

Third, adding a dissimilarity loss term (encouraging each prediction to be different

from the rest of estimates) to strong baselines like UMX, does not seem to improve

performance.

Four, when re-purposing the SISDR loss for the magnitude spectral domain we

obtain slightly better results than L2freq. We can find a similar case in the literature

in [47], where Févotte et al. describe the benefits from scale invariance when working

with spectrograms with the Itakura-Saito divergence in NMF: as the audio spectra

typically exhibit exponential power decrease along frequency as well as comprehend

low-power note attacks, scale invariance encourages the model to focus on these

components as much as in the high-power tonal parts.

4.2 Temporal losses

Using temporal losses in a spectral model such as jUMX does not seem to improve

the results obtained with spectral losses. Still, log(L1time) and SISDRtime perform

reasonably well despite achieving worse results than their spectral counterparts. If

we take a look at the training curves in Figure 14, we observe that the temporal

loss curve presents more noise than the spectral one, suggesting that it is more

challenging to optimize directly in the waveform-domain for jUMX — remember

that jUMX separates sources via employing time-frequency masks.

We also observe that the worst results are obtained by L1time and L2time losses, fol-

lowed by the Multi-Resolution STFT (MultiSTFT) loss. Again, we want to empha-

size that these results are obtained via training a spectrogram-based model (jUMX)

with a waveform loss. For this reason, in future work we would like to run a similar
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study using a waveform-based model such as Demucs [17] — to asses whether the

results are similar or not.

200 400 600 800
epochs

0.4

0.5

0.6

0.7

0.8
L1

L1mag
10*L1time

Figure 14: L1 training loss on temporal and frequency domains. We multiply L1time
x10 for visualization purposes, since our goal is to visualize the shape of the learning
curves (not its absolute values). Note that L1 losses are not comparable since they
respectively operate on the magnitude and waveform domains.

Finally, we want to note all temporal losses that incorporate a logarithmic compres-

sion (SISDRtime, SDSDRtime, log(L1time) and log(L2time)) obtain much better per-

formance than their uncompressed counterparts (L1time, L2time and MultiSTFT )

— denoting the importance of this compression factor.

4.2.1 Logaritmic losses and its relation to SISDR

Heitkaemper et al. showed that log(L2time) is closely related to SISDRtime:

SISDR = 10 · log(L2time/
∑
t

|yt,k|2) (4.1)

In particular, they suggested that because the denominator from the equation above

does not depend on trainable parameters, both losses should perform the same. Our

results seem to contradict this, since SISDRtime achieves a better score (≈0.4 dB

SDR more). Interestingly, though, the log(L1time) loss achieves results that are
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comparable to SISDRtime, suggesting that the energy of the target
∑

t |yt,k|2 or

etarget plays a role in the optimization.

Note that in log(L2) and log(L1) compressing the loss through the logarithm en-

courages the model to focus in low-energy components in a similar fashion than with

scale invariance. When we re-write both losses as log(L2time) = log10(
∑

t |yt − ỹt|2)

and log(L1time) = log10(
∑

t |yt − ỹt|) respectively, it is shown that in log(L1) there

is more compression with respect to log(L2) due to the lack of exponent. Despite

log(L2freq) does not improve upon the baseline, the rest of losses perform better

once compression is applied.

4.3 Scale invariance and Wiener Filter

Regarding scale invariance, it should be noted that we are avoiding volume-related

issues thanks to the Multichannel Wiener Filter (MWF) post-processing step Ope-

nUnmix relies on.

If we evaluate SISDR (scale-invariant) losses an compare with scale-dependent losses

like L2freq or SDSDRtime, we observe that using scale-invariant losses without re-

building scale through the MWF produces a dramatic drop in performance — due

to bad volume estimates caused by the scale-invariance property of the loss:

Table 5: Ablation on the MWF for scale-dependent and invariant losses. Average
SDR among all instruments.

with MWF without MWF

L2freq 5.51 4.77

SISDRfreq 5.58 2.74

SDSDRtime 5.34 5.04

SISDRtime 5.11 0.31
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4.4 Perceptual evaluation:

critical listening of best candidates

If we perform a critical listening test with the three best candidates, i.e. by using

L2freq, SISDRfreq and log(L1freq) losses on top of the original UMX model to an

out-of-sample test track. The first thing that seems relevant is that the waveforms

are different even to the naked eye. As depicted in Figure 15, all candidates present

interference issues, denoting that music source separation is a challenging research

topic. Notably, SISDRfreq’s interferences have a large amplitude comparable to

the amplitude of the separated source. Also note that the case of log(L1freq) inter-

ferences are minimal.

UMX L2freq

jUMX L2freq

jUMX SISDRfreq

jUMX log(L1freq)

Figure 15: Resulting vocals’ waveforms for an out-of-sample test track. Orange
depicts the manually edited vocals on top of the separated waveform, in blue.

When listening across a set of ten evaluation tracks, we observe that the interference

is usually coming from the hi-hat and cymbals high-frequencies present in the drums

stem. However, this better separation of cymbals comes at the price of a duller low-

frequency response, being the original UMX the one with better low-end response.

To our understanding, log(L1freq)’s best separation seems to be the most desirable,

but this should be confirmed with a Mean Opinion Score perceptual test.
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Conclusions

The two main contributions of this work are the following ones:

• We provide an extensive review of the different losses that have been proposed

for training deep learning models for processing audio.

• We investigate the performance of those for the music source separation task.

Throughout our study, we find that despite L1 and L2 losses are limited to wave-

form and magnitude matching, these still outperform most of the proposed alterna-

tives from the literature when isolated from additional techniques and modifications.

Most of the proposals fail to improve results when using a standardized evaluation

framework such as ours, suggesting that these might be suited for the original task

and architecture it was proposed for but it does not generalize to music source

separation and OpenUnmix (UMX).

While the lack of phase insight in spectral losses should yield to worse results than

temporal losses, we observed the opposite: temporal losses don’t work as well as

spectral ones when using a magnitude mask-based model like OpenUnmix (UMX).

The original L2 in the magnitude spectrogram domain is still a strong baseline, only

comparable to log(L1freq). While SISDRfreq generates some of the best objective

37
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scores, in our informal listening test as well as in Figure 15 we find that the scale

invariant SDR (SISDR) loss can be problematic — hence, L2 and log(L1freq) losses

are preferable. For these reasons, we argue that scale invariant losses should only

be used together with scale reconstruction mechanisms like Wiener Filter.

Finally, we also observe that introducing a log(·) compression to the loss normally

improves performance both in objective and subjective terms.

We investigated the impact of using one loss or another. However, advanced loss

types (e.g., adversarial and deep feature losses) were not benchmarked. In line

with that, it would also be interesting to benchmark the combination of the most

promising losses we identified above. And, finally, as an alternative future research

line, we would like to run a similar study but considering a waveform-based model

— instead of OpenUnmix (UMX) that is based on filtering spetrograms.
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