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Abstract. In recent years, numerous deep learning approaches to video
super resolution have been proposed, increasing the resolution of one
frame using information found in neighboring frames. Such methods ei-
ther warp frames into alignment using optical flow, or else forgo warping
and use optical flow as an additional network input. In this work we point
out the disadvantages inherent in these two approaches and propose one
that inherits the best features of both, warping with the integer part of
the flow and using the fractional part as network input. Moreover, an
iterative residual super-resolution approach is proposed to incrementally
improve quality as more neighboring frames are provided. Incorporating
the above in a recurrent architecture, we train, evaluate and compare
the proposed network to the SotA, and note its superior performance in
faster motion sequences.

Keywords: super resolution, motion compensation

1 Introduction

Super resolution (SR) refers to a group of algorithms that aim to upsample a low
resolution input (LR) in order to produce a higher resolution (HR) output. The
challenge lies in reproducing the missing high frequency details of the input. SR
is an ill-posed problem as there is no unique relationship between a LR and a HR
image. SR methods can utilize either a single image (SISR), or multiple images
(MISR) as an input. Given the abundance of video data streams, it became
evident that MISR methods can be used to improve the resolution of a video
due to the temporal consistency of successive frames. Video SR methods (VSR)
effectively recover high frequency content, using information from neighboring
frames.
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VSR methods aim to exploit unique information from each one of the neigh-
bouring frames in order to produce a true HR result. For this purpose, the
frames, which contain the same content shifted in an arbitrary way, must be
accurately registered to the examined one. The biggest challenge here is to ac-
count for the inter-frame motion in the sequence. Realistic videos can contain
arbitrary motion due to the camera object movement, making the registration a
tedious task.

A naive approach to the problem is to concatenate all inputs and let a deep
Convolutional Neural Network (CNN) implicitly model the spatial relationship
between useful features. Although the increased depth and pooling operations of
modern CNNs have quite big effective receptive fields, their convolutional nature
remains local. While local correspondences may get captured at higher layers,
additional complexity is added to the model making it more difficult to train
and generalize. This is especially relevant in faster motion sequences, where ob-
ject displacements between neighboring frames are larger and a correspondingly
wider receptive field is required to capture them.

A common way to alleviate the inter-frame motion is to explicitly compen-
sate this disparity by using warping to spatially align the neighboring images
to a common reference location. Despite the intuitive merit of explicit warp-
ing, it constitutes a resampling operation using interpolation, which inherently
causes blurring, lowered contrast and loss of information, reducing the super-
resolution’s effectiveness.

Another important parameter of the VSR methods is the strategy used to
incorporate information from the neighboring frames, giving rise to different
approaches. The number of frames used and the input sequence are important
choices that bound the application of the methods proposed in literature. Most
recent convolutional methods have to be trained and tested on a fixed number
of neighbors, regardless of the early or late fusion scheme used.

This work focuses on improving super-resolution quality on video sequences
with larger motions. Towards this goal, we propose a two step approach to
neighboring frame registration: to warp neighboring frames only by the integer
part of the optical flow, thus avoiding interpolation and the associated qual-
ity degradation; and to use the fractional part of the flow as an input to the
neural network, letting it model the sub-pixel correspondences. We incorporate
this approach into a recurrent residual architecture that fuses information from
neighboring frames using a shared reconstruction branch. The resulting network
progressively enhances the output quality with each processed input, offering the
flexibility to adapt inference speed and quality by using more or less neighboring
frames as input.

The contributions of this work can be summarized in the following aspects:

– An explicit quantized motion compensation methodology, that preserves de-
tail at the input level. The proposed method significantly improves the re-
sults and the generalization capacity of a baseline network, especially on
complex videos with high inter-frame motion.
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– An implicit modeling of sub-pixel motions, using the fractional part of the
optical flow as an additional input to the network.

– A recurrent CNN architecture that progressively enhances the produced out-
put with each input frame using residuals is proposed. It can handle frame
sequences of arbitrary length, offering unique flexibility.

The proposed methodologies are thoroughly analysed and our claims are
firmly supported by extensive experiments and ablation studies.

The rest of this paper is organized as follows: Section 2 discusses recent and
relevant advances in deep learning-based SR; Section 3 considers the advantages
and disadvantages of different registration strategies and explains the reason-
ing behind the proposed hybrid approach; The proposed network architecture
and its constituent modules are presented in Section 4; Section 5 presents and
discusses experimental results, comparisons with state of the art VSR methods,
and ablation studies. Lastly, 6 provides a conclusion.

2 Related Work

Single-Image Super-Resolution: In 2014, for the first time, Dong et al. ex-
ploited the power of convolutional neural networks, by proposing SRCNN [2], a
lightweight 3-layer convolutional model, to address the single image super res-
olution (SISR) problem. Later, based on SRCNN, deeper and more complex
models, such as VDSR [10] with 20 stacked layers, DRCN [11] and DRRN [19]
with recursive leaning and parameters sharing and MemNet [20] with memory
block, were introduced and achieved higher reconstruction performance. Inspired
by DenseNet [6], Tong et al. suggested SRDenseNet [22], by removing the pool-
ing layers, and the RDN model [26] improved SRDenseNet’s performance by
exploiting local and global residual skip connections. Yang et al. proposed the
Deep Edge Guided Recurrent Residual Network (DEGREE) [25], motivated by
the fact that edge features can provide valuable guidance for SISR. Based on the
conventional back-projection method [7], Haris et al. proposed DBPN [3], a net-
work with iterative upsampling and downsampling modules. Finally, for more
photo-realistic results a combination of generative adversarial networks with
perceptual and texture matching losses was used in SRGAN [13] and ENEt [17]
models, respectively.

Video Super-Resolution Most of the deep learning based Video Super
Resolution (VSR) approaches address the VSR task by combining a motion
estimation module with an image warping module. Kappeler et al. proposed
VSRnet [9], a model that exploits the temporal information by jointly process-
ing multiple consecutive frames. The neighboring frames are warped towards the
reference frame by a conventional optical flow algorithm before they are fed to
the model. Based to this premise, VESPCN [1] introduced a spatial transformer
network, in order to efficiently encode motion information between frames. The
aforementioned model is jointly trained with a SISR sub-pixel convolution net-
work for fast and accurate reconstruction. Tao et al. [21] used the same motion
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compensation transformer as in VESPCN to produce the motion field and an
SPMC layer for simultaneous sub-pixel motion compensation and resolution en-
hancement. More recently, Sajjadi [18] proposed an end-to-end recurrent video
super resolution model, which exploits the information of the previously inferred
super-resolved HR frame to reconstruct the subsequent frame. The flow estima-
tion and the SR network sub-modules are trained simultaneously.

The aforementioned methods have as common core element the image warp-
ing module that performs alignment by estimating optical flow information be-
tween the reference and its neighboring frames. Unlike this approach, Jo et al. [8]
proposed DUF, a network that avoids explicit motion estimation and compen-
sation by generating dynamic upsampling filters. The EDVR architecture [23]
follows the logic of implicit alignment, introducing a Pyramid, Cascading and
Deformable (PCD) alignment module, where alignment is done in a coarse-to-
fine manner without the classic image warping technique. Haris et al. extended
the SISR DBPN architecture to video super resolution with the RBPN [4], a
recurrent model that treats each neighboring frame as a separate source of in-
formation that iteratively refines the HR features through multiple up and down
projections. Our work introduces a novel approach to register neighboring frames
using a quantized warping method, which models the subpixel displacements, to
treat efficiently the flow information. Moreover we employ a recurrent residual
reconstruction module to refine the SR output with an arbitrary number of input
frames.

3 Optical Flow and Spatial Alignment

In video super resolution, the resolution of a reference frame is increased using in-
formation from neighboring frames, which are assumed to depict the same scene
at different points in time. In each frame, the same object may occupy a different
position, due to its own movement or global camera movement. For this reason,
VSR methods must take into consideration the relative displacement of objects
in neighboring frames and, explicitly or implicitly, align the information therein
with the core information contained in the reference frame. Spatial correspon-
dence between frames is usually expressed with optical flow. Based on optical
flow, most deep learning VSR methods either opt for explicit motion compensa-
tion, or forgo compensation and use the flow as an additional input, implicitly
letting the network compensate. Both approaches, however, have drawbacks.

Explicit motion compensation approaches [1,9,18,21] use optical flow to warp
each neighboring frame, producing a warped frame that is spatially aligned with
the reference frame. As optical flow values are floating-point, pixel values in
the warped frame are calculated by interpolation, based on the original pixels
of the neighboring frame. Interpolation, however, degrades image quality by
introducing irreversible error, resulting in lowered contrast and blur [12].

No warping approaches [4,8,23], instead, use optical flow as an additional
input layer, and let the neural network learn to align information based on this
input. This approach, although effective, necessitates a large receptive field in
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order to capture faster motions, resulting in an increased number of parameters
and correspondingly slower training and execution times. Moreover, as the place-
ment of the region of interest within the large receptive field varies, it becomes
harder for the network to adapt and focus only in the relevant information.

Driven by the above observations, the present work proposes to split optical
flow into an integer and a fractional part, using the former for interpolation-free
“quantized” warping, and the latter as an additional input to the network. This
approach combines the advantages of both warping and no-warping, retaining
a small relative displacement, while avoiding interpolation errors, and making
efficient use of all available information.

Fig. 1 shows pixel correspondence and information usage in the two ap-
proaches mentioned above as well as the proposed approach, showcasing the
pros and cons of each with a simplified example. Taking a 5× 5 pixel area, the
example focuses on calculating a new SR value for the green pixel of interest.
The corresponding position in the neighboring frame, according to optical flow,
lies 1.7 pixels to the right and 1.4 pixels down.

Fig. 1: A visual overview of different approaches to optical flow warping for super
resolution. The top row describes floating point warping, where interpolation is
used to warp the neighboring frame into exact spatial alignment with the refer-
ence. The middle row depicts foregoing warping and alignment, using instead a
larger receptive field and the optical flow as an additional input to the network.
The bottom row describes the proposed approach, constructing a roughly aligned
warped image using only the integer part of the optical flow, and providing the
fractional part as an additional network input. The last column summarizes the
pros and cons of each approach, along with their network input.
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Fig. 2: Illustration of the the blurring effect of traditional alignment warping. In
the image warped with floating-point optical flow, note the loss of detail in the
eyes and the reduced contrast in the shadows of the shirt’s collar. Compare with
the corresponding regions in the image produced with quantized warping

In floating-point warping, the warped frame is calculated by taking the opti-
cal flow vectors and interpolating between pixels. The purple interpolated pixel
corresponds exactly to the green pixel of interest. As all information is spatially
aligned between referenced and warped frame, the network need not have a large
receptive field; in theory, even a 1 × 1 receptive field could be enough, though
usually a somehow wider field is used to also extract information from neighbor-
ing pixels. The reference and warped frames are then stacked and used as input
to the network.

In the case of no warping, the neighbor frame itself is used as an input, along
the reference frame. The optical flow field provides an additional input. Here, the
receptive field must be at least as large as the maximum motion vector length.
A large number of pixels from the neighboring frame will contribute to the end
result, and the network must learn to focus on the most relevant pixels according
to the optical flow input.

Finally, in the proposed approach of quantized warping, the warped frame
is computed by shifting pixels in the neighbor frame by the integer part of the
optical flow vectors. Hence, the spatial correspondence between the reference
and warped frame is not perfect, as in floating-point warping, but displacements
are confined to the [0, 1) range, for arbitrary large displacements. The minimum
required receptive field here is 2x2 pixels, although again this can be widened
to extract additional information from neighboring pixels. The network input
consists of the reference and warped frames, as well as the fractional part of the
optical flow field, which was not used for warping. Therefore, the network must
learn to take into account the displacement between the reference and warped
frames, but this is now only a sub-pixel displacement. Displacements larger than
1 pixel are offset during the warping phase, allowing the network to compensate
for faster motions without a large receptive field.

Fig. 2 illustrates floating-point warping’s interpolation error in a zoomed
detail from a real video sequence. The third image, produced by warping the
neighboring frame with the full optical flow, exhibits blur, loss of detail, and
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reduced contrast. By contrast, the image produced by quantized warping retains
the same level of sharpness as the original.

4 Network Architecture

Let {It−N , . . . , It, . . . , It+N} be a sequence of 2N+1 LR consecutive frames. We
denote It as the reference frame, It+n, n ∈ [−N,N ], n ̸= 0 as the neighboring
frames and Ft−>t+n as the flow between It and It+n. The aim of VSR is to
reconstruct a HR version of It, denoted by ISR

t , by exploiting the information
of the neighboring frames.

The proposed network architecture follows a recurrent structure that progres-
sively reconstructs the ISR

t image by adding, in each iteration, extra information
from the neighboring frames using the back-projection process [7], inspired by
the RBPN [4]. The proposed network comprises 3 processing stages. In the first
stage, denoted as Shallow Feature Extraction, features are extracted from the
available LR data. Next, in the Back-projection module, the basic processing to
produce the respective HR features is performed and, finally, in the Reconstruc-
tion stage, the SR image is composed. This procedure is performed repetitively
for each new frame used. The overall proposed architecture is depicted in Fig. 3.

Shallow Feature Extraction: The input LR It frame is passed through
a convolutional layer to extract the initial LR features maps, St. Moreover, for
each neighboring frame It+n, the corresponding warped frame IWARPED

t+n w.r.t
the reference frame is computed based on the proposed ‘quantized’ warping
method. To warp a pixel of the neighboring frame to the reference, only the
integer part of the optical flow Ft−>t+n is used. However, the integer part does
not contain the precise displacement information and therefore, for each pixel, we
utilize 4 warps with all 4 neighboring pixels in order to fully preserve the subpixel
motion information, as shown in Fig. 4. Therefore, for one neighboring frame,
4 warped images are computed that are stacked to produce the corresponding
warped frame IWARPED

t+n .
Finally, the reference frame It, the neighboring warped frame IWARPED

t+n and
the fractional part of the of pre-computed flow map F fractional

t+n , that was not used
in warping process, are concatenated and given as input to a convolutional layer
to produce feature maps Mt+n. The St and the Mt+n feature maps represent
the single-scale and the multi-scale information, respectively.

Back-projection: The back-projection module combines the single and the
multi-scale information by projecting the reference features St to each neighbor-
ing frame’s features Mt+n in order to capture missing information. It takes as
input the St and the Mt+n feature maps and outputs the refined HR feature
maps Ht+n and the next LR features St+n, using convolutional structures.As
shown in Fig. 5, the module, first, produces the refined HR Ht+n maps through
the back projection to particular neighbor frame. Then downscales Ht+n to out-
put the next LR features St+n. The whole process is described as follows:

HS
t+N−1 = NetS(St+N−1) (1)
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Fig. 3: Illustration of the unfolded architecture of the proposed recurrent network

HM
t+N = NetM (Mt+N ) (2)

Ht+Nres
= Netres(HS

t+N−1 −HM
t+N ) (3)

Ht+N = HS
t+N−1 +Ht+Nres

(4)
St+N = Netdownscale(Ht+N ), (5)

where NetS , NetM , Netres and Netdownscale are the respective convolutional
networks for each task.

Fig. 4: The 4 warped images that are
produced for each neighboring frame
using our proposed quantized method

Fig. 5: Back-projection module

Image Reconstruction: In the proposed network, the image reconstruction
module follows a temporal integration strategy in order to produce the final
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super-resolved image ISR
t . A recurrent residual reconstruction process has been

developed that progressively enhances the produced ISR
t+n at the image level by

adding further information from each neighboring frame. This strategy exploits
directly and efficiently the extra information from the neighbors and, in the last
iteration, outputs a refined, detailed ISR

t image.
Consequently, unlike the majority of VSR approaches that require distinct

models for accepting a different number of frames as input, the proposed re-
construction architecture enables the same network, trained on fixed number of
frames, to handle frame sequences of arbitrary length. The number of neighbor-
ing frames used in the inference phase depends on the desired inference speed
and reconstruction quality.

It is evident, though, that the task is characterized by an inherent temporal
locality, with the majority of useful information being on frames temporally
adjacent to the reference one. The reconstruction process is formulated as:

ISR
t = Ibict + ISR

t−N,res + ISR
t−N+1,res + · · ·+ ISR

t+N,res (6)

where Ibict is the bicubic upscaled version of It.
This procedure is repeated until all available neighboring frames have been

processed.

5 Experimental Results

5.1 Implementation and Training Details

All models are trained with the Vimeo-90k [24] dataset, which consists of 64612
7-frame sequences and contains diverse scenes and motions. For testing we use
the standard benchmark datasets including Vid4 [14], and Vimeo-90k-T. The
performance of the models is evaluated using the PSNR and SSIM quality met-
rics, both on the RGB color space and on the Y-channel (luminance) from YCbCr
color space. By following [4], we crop 2s pixels around image boundary at test-
ing phase, where s is the scale factor. Additionally, we remove the first and last
3 frames of the sequence. For our main model, we use a 3-stage DBPN [3] for
NetS and a 5-block ResNet [5] for NetM , Netres, Netdownscale, based on [4].
Each ResNet block consists of 2 convolutional layers with a 3 × 3 kernel and
the up-sampling layer is a transposed convolutional layer with an 8 × 8 ker-
nel, stride 4 and padding 2. The optical flow information is extracted using the
implementation by [15].

During the training phase, RGB patches with size 64 × 64 are randomly
cropped form the LR input images and the mini-batch size is set at 4. The ex-
tracted patches are augmented with vertical and horizontal flipping and rotation.
The Adam optimizer is used for model’s parameter update with β1 = 0.9 and
β1 = 0.999. All proposed models are trained using L1 norm as loss function with
initial learning rate 10−4, which decreases by a factor of 10 every 75 epochs.
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Table 1: Quantitative evaluation of state-of-the-art VSR methods on Vimeo-
90K and REDS dataset. Red and blue indicate the best and the second best
performance (PSNR/SSIM)

Motion type Bicubic
(1 Frame)

DUF [8]
(7 Frames)

EDVR [23]
(7 Frames)

RBPN [4]
(7 Frames)

Proposed
(7 Frames)

Vimeo-90k-T (Y) 31.32/0.8684 36.37/0.9387 37.61/0.9489 37.16/0.9420 37.23/0.9445

REDS (RGB) 26.14/0.7292 28.63/0.8251 30.49/0.8700 29.84/0.8538 30.50/0.8698

5.2 Results on Large Motions and Generalization

We compare our proposed network with the 3 most prominent state-of-the-art
methods in VSR, namely DUF [8], RBPN [4] and EDVR [23]. Testing is done
on the most challenging and diverse datasets:Vimeo-90k-T and REDS [16].

Vimeo-90k-T is a large and commonly used dataset that contains diverse
HQ data and a range of motion types. For evaluation on more challenging data,
we test with REDS, that consists of high resolution HQ images, with larger
and more complex motions. For the following results we trained our model on
Vimeo-90k for upscaling x4 and using 6 neighboring frames, 3 past and 3 future
ones.

In table 1, the quantitative evaluation of SoA VSR methods on the most
challenging datasets, Vimeo-90k and REDS, is presented. For the results of this
table we use networks trained on Vimeo-90k dataset for EDVR, RBPN and the
proposed method. First of all, we can see that the proposed method presents a
clear improvement over RBPN and DUF on both datasets, with the difference
being bigger on REDS. Compared to EDVR, which is the current SoA, the per-
formance of the proposed method is worse on Vimeo-90k but on par on REDS,
despite having 8 million parameters less. These results indicate that our model
generalizes better on unknown data, irrespective of the training data, and does
not suffer from dataset overfitting issues. The fact that our model closes the per-
formance gap with the SoA on the most complex and realistic dataset, indicates
that our motion compensation strategy is successful. Qualitatively, the proposed
model is capable to recover high frequency details and more accurate textures
compared to existing methods, as shown in Fig. 8 on examples obtained from
Vimeo-90k, REDS and Vid4.

To further illustrate the merit of our approach, we thoroughly compare our
method with RBPN on different Vimeo-90k splits with different motion char-
acteristics. RBPN’s architecture is also based on back-projection modules and
mainly differs from our model in motion information handling at the input.
RBPN uses no warping or any other motion compensation for neighbouring
frames. As can be seen on tables 2 and Fig. 6, the proposed method increasingly
outperforms RBPN as the motion magnitude grows larger, with the difference
reaching 0.19db.
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5.3 Ablation Studies

In order to validate the additive value of each of our contributions, we implement
them one by one and conduct relevant experiments and comparisons. The archi-
tectures mentioned throughout this section are smaller versions of the proposed
model, to allow for shorter training duration. The total number of parameters is
reduced from ≈ 12 to ≈ 1.8 million by reducing the ResNet blocks of each back-
projection module from 5 to 2, the feature number of de-convolutional layers and
DBPN from 64 to 32, as well as reducing the features of each convolutional layer
from 256 to 128. If not mentioned explicitly otherwise, the ablation experiments
are using 5 input frames in total.

Table 2: Quantitative comparison be-
tween RBPN and the proposed network,
on Vimeo90k-T

Dataset
Method RBPN/F7 Proposed/F7 Diff

Vimeo-90k-T (Y)
Slow 34.18/0.9200 34.18/0.9221 0.0
Medium 37.28/0.9470 37.30/0.9496 0.02
Fast 40.03/0.9600 40.22/0.9626 0.19

Avg. 37.16/0.9423 37.23/0.9447 0.07

Fig. 6: Improvement over RBPN per
motion magnitude

Quantized Warping Effectiveness: To strengthen our claim that the pro-
posed quantized warping process is more suitable for the VSR task than the
floating-point warping, we train two separate models with the same structure,
parameters and neighbors but with different warping methods at the input level.
The one model receives as input the concatenation of the reference frame, the
integer warped frame and the fractional optical flow, whereas the other takes as
input the concatenation of the reference frame and the floating warped frame.
We also compare the above models with a third model, similar to RBPN[4],
that uses no warping and relies on implicit motion estimation. The input of this
model is a simple concatenation of the reference frame, the neighboring frame
and the flow information between them.

Table 3 shows that our quantized warping method outperforms the floating-
point one and increases the model’s reconstruction performance by 0.44 dB on
Vid4 and by more than 1 dB on Vimeo-90k-T, at all motion types. These results
show that for the VSR task is more important to maintain the high frequency
information of neighboring frames than to achieve a precise motion compensa-
tion using a interpolated warping method, which produces blurry input images.
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Table 3: Effect of the warping method on the Vid4 and Vimeo-90k-T datasets
for upscaling factor 4

Dataset
Method No

warping
Floating-point

warping
Proposed quantized

warping

Vid4 26.68/0.801 26.24/0.786 26.68/0.801

Vimeo-90k-T
Slow 33.47/0.9120 32.90/0.9038 33.47/0.9120
Medium 36.48/0.9418 35.30/0.9273 36.53/0.9423
Fast 39.26/0.9551 38.16/0.9431 39.54/0.9580

Avg. 36.40/0.9363 35.45/0.9247 36.51/0.9374

Notice that floating point warping causes blur even for motions smaller than 1
pixel, which explains the reduced performance on the slow split.

Compared to no warping method, we notice that the two approaches provide
similar results for slow motions -Vid4, Vimeo90k-slow- and the effectiveness of
our method is more clear at medium and fast motions. These results are expected
as for small displacements the network with no warping is capable to focus
on the relevant information between the reference and the neighboring frame.
However, for faster motions is difficult for the network to capture the larger
region of interest and align implicitly the useful information, despite the final
large receptive field. Our method provides the network with warped detailed
images that make easier and more efficient the reconstruction process.

Usage of Subpixel Motion Information: As described in Section 4, our
warping method utilizes all 4 neighboring pixels to fully preserve subpixel motion
information. Using a simple, nearest-neighbor interpolation, for each neighboring
frame is produced only one warped image based on the information of the nearest
pixel. This method would result in inputs with lost displacement information,
but crisp details. We evaluated the added value of warping the entirety of the
neighborhood by training a network using each method. As seen on table 4, the
additional information from all neighboring pixels improves the reconstruction
ability of the network.

Sequence Length: We train our model with video sequences of different lengths
to investigate how the number of the neighboring frames affects the reconstruc-
tion performance. As shown in table 5, the model’s performance improves with
longer sequences, as the network benefits from the extra relevant information.
The F7 model, with 3 past and 3 future neighbors outperforms the F5 model,
with 2 past and 2 future neighbors, by more than 0.2 dB on both datasets.
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Table 4: Effect of neighbors per pixel
on Vid4 and Vimeo-90k-T datasets

Dataset
Method 1

Neighbor
4

Neighbors

Vid4 26.66/0.8005 26.68/0.8006
Vimeo-90k-T

(avg.) 36.48/0.9374 36.51/0.9374

Table 5: Effect of sequence length on
Vid4 and Vimeo-90k-T dataset

Dataset
Method Proposed

F5
Proposed

F7

Vid4 26.68/0.8006 26.90/0.8104
Vimeo-90k-T

(avg.) 36.51/0.9374 36.76/0.9402

Residual Temporal Integration Module: We validate the efficiency and
the flexibility of our model to handle arbitrary number of frames. We observed
that by training our recurrent model with a fixed number of input frames, its
performance sharply deteriorates when presented with inputs of different length.
To overcome this, we trained a model with sequences of varying length. As can
be seen in Fig. 7, the resulting model achieves more stable performance across
a wider range of input lengths.

Fig. 7: Performance curves on REDS for models trained using different input
lengths (varying between 2–5 frames for the solid-blue, 5 for the dashed-orange).

6 Conclusion

In this paper, we propose a quantized warping method and a residual temporal
integration module combined to a flexible VSR framework that generates high
quality results and outperforms most of the previous approaches on big and
complex motions. In an extensive set of experiments, we show that the proposed
warping method is more suitable for the VSR task compared to floating-point
warping or no warping and boosts the model’s performance. The quantized warp-
ing method is a general algorithm that could be used to other tasks, which focus
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more on detailed warped images than precise alignment, beyond VSR. More-
over, the residual temporal integration module allows the network to be flexible
to frame sequences with arbitrary length without extra training.

The proposed method is better suited to take advantage of neighboring
frames with big displacements, due to rapid motion or temporal frame distance,
as it explicitly compensates the relative displacements and lets the network
model only the remaining, subpixel displacements. Consequently, it generalizes
better across different datasets with diverse motion content, showing perfor-
mance competitive to the SoA, despite using a significantly smaller network and
generic optical flow.
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