Journal article Open Access

Structural Heterogeneity in Single Particle Imaging Using X‑ray Lasers

Thomas Mandl; Christofer Östlin; Ibrahim E. Dawod; Maxim N. Brodmerkel; Erik G. Marklund; Andrew V. Martin; Nicusor Timneanu; Carl Caleman

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4087872</identifier>
      <creatorName>Thomas Mandl</creatorName>
      <creatorName>Christofer Östlin</creatorName>
      <creatorName>Ibrahim E. Dawod</creatorName>
      <creatorName>Maxim N. Brodmerkel</creatorName>
      <creatorName>Erik G. Marklund</creatorName>
      <creatorName>Andrew V. Martin</creatorName>
      <creatorName>Nicusor Timneanu</creatorName>
      <creatorName>Carl Caleman</creatorName>
    <title>Structural Heterogeneity in Single Particle Imaging Using X‑ray Lasers</title>
    <date dateType="Issued">2020-10-14</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4087871</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;One of the challenges facing single particle imaging with ultrafast X-ray&lt;br&gt;
pulses is the structural heterogeneity of the sample to be imaged. For the method to succeed&lt;br&gt;
with weakly scattering samples, the diffracted images from a large number of individual&lt;br&gt;
proteins need to be averaged. The more the individual proteins differ in structure, the lower&lt;br&gt;
the achievable resolution in the final reconstructed image. We use molecular dynamics to&lt;br&gt;
simulate two globular proteins in vacuum, fully desolvated as well as with two different&lt;br&gt;
solvation layers, at various temperatures. We calculate the diffraction patterns based on the&lt;br&gt;
simulations and evaluate the noise in the averaged patterns arising from the structural&lt;br&gt;
differences and the surrounding water. Our simulations show that the presence of a minimal&lt;br&gt;
water coverage with an average 3 &amp;Aring; thickness will stabilize the protein, reducing the noise associated with structural heterogeneity,&lt;br&gt;
whereas additional water will generate more background noise.&lt;/p&gt;</description>
All versions This version
Views 9898
Downloads 2222
Data volume 71.0 MB71.0 MB
Unique views 8787
Unique downloads 2121


Cite as