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Abstract. Machine-learning-based approaches for
pose estimation are trained using annotated ground-
truth data – images showing the object and informa-
tion of its pose. In this work an approach to semi-
automatically generate 6D pose-annotated data, us-
ing a movable marker and an articulated robot, is
presented. A neural network for pose estimation is
trained using datasets varying in size and type. The
evaluation shows that small datasets recorded in the
target domain and supplemented with augmented im-
ages lead to more robust results than larger synthetic
datasets. The results demonstrate that a mobile ma-
nipulator using the proposed pose-estimation system
could be deployed in real-life logistics applications
to increase the level of automation.

1. Introduction

Production facilities have successfully deployed
classic fixed-programmed robots since the 1960s.
Due to their inability to perceive the environment,
such robots have mostly been used in mass produc-
tion, where a static setup can be assumed [8]. The
production industries’ move away from mass produc-
tion towards highly customized goods requires in-
creased flexibility. Deploying mobile manipulators,
a combination of mobile and articulated robots, for
intra-logistical transport tasks, promises this desired
modularity [6]. Since the accuracy achieved by mo-
bile robot navigation is not sufficient to grasp ob-
jects, robots need sensors to perceive their surround-
ings and autonomously detect objects’ poses [1]. The
most promising approaches for pose estimation are
machine-learning-based methods applied to camera
data [2]. Deep neural networks are trained using an-
notated ground-truth data – images showing the ob-
ject and information of its pose [4]. State-of-the-art
methods for creating such data use markers rigidly

attached to the objects, which have to be removed in
cumbersome post-processing [3], or need human an-
notators that align 3D models to video-streams [5].
In this work an approach to semi-automatically gen-
erate 6D-pose-annotated training data using an artic-
ulated robot is presented.

2. Semi-Automatic Data-Generation

As shown in Figure 1 the object is placed in front
of the robot and a fiducial marker is put on it in a de-
fined pose. The pose of the marker with respect to
the camera is computed from the captured image and
used to calculate the pose of the object with respect
to the robot’s base. The marker is captured from mul-
tiple perspectives and the mean pose is calculated to
minimize errors of the camera calibration and marker
detection. Afterwards the marker is removed (care
must be taken that the object is not displaced) and the
robot arm moves around the object to capture images
and associated object-pose data automatically. In or-
der to make the data also usable for training neural
networks for object detection, the object can be ren-
dered in a virtual environment to calculate segmenta-
tion masks. The design minimizes the extent of hu-
man labor. It is only necessary to place the marker on
the object, capture images of it, and remove it again,
to enable recording of several thousand training im-
ages fully autonomously. Drawbacks are that the pro-
cess has to be repeated to cover the other half of the
orientation space and that the background is static.
However, this can be solved by data augmentation.

3. Results & Discussion

Multiple annotated datasets are created using the
proposed method and used to train the deep-learning-
based 6D pose estimation system DOPE [7]. The an-
notated training data is split into five equally sized
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Figure 1. Procedure for generating annotated data, using a robot and a movable fiducial marker.

portions and merged to gain datasets containing 20%
to 100% (15k images) of all recorded samples.

The translational-15mm-error metrics (percentage
of tested data for which the translational error is
smaller than 15 mm – accuracy necessary for grasp-
ing) [7] in Figure 2 show, that using pre-trained mod-
els (blue, 6-10) leads to better performance than ini-
tializing networks with random weights (red, 1-5).
Bigger datasets do not necessarily improve the ac-
curacy since biased datasets lead to wrong general-
izations (e.g. network 5). A relatively small dataset
recorded in the target domain achieves better results
than a several times larger synthetic dataset (net-
work 12: 15k real + 15k domain randomized im-
ages), especially when extended using data augmen-
tation (network 11: smallest real dataset augmented
twice). The rotational errors show similar results, but
are generally lower.

Figure 2. Translational errors compared regarding train-
ing time: Synthetic data (green), augmented data (cyan),
pre-trained (blue) and non-pre-trained networks (red).
Bubble-size visualizes dataset-size.

A qualitative evaluation using a real mobile ma-
nipulator confirms that the proposed pose-estimation
system could be deployed in real-life logistics appli-
cations to increase the level of automation.
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