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Abstract 

Given the proceeding digitization in manufacturing, technical universities are facing an increasing demand to study the technical 
innovations associated with smart manufacturing concepts in their laboratories and learning factories. Moreover, they need to 
transfer research insights towards teaching. The thematic spectrum is enormous – starting with production technologies, via robotics 
and mechatronics, M2M-communication and security, up to the virtualization of processes and modern algorithms, e.g. machine 
learning. In this context, we explain the concept of the Digital Factory at the University of Applied Sciences Technikum Wien. 
Further, we present two exemplary use cases and conclude with current findings regarding learning factory concepts. 
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1. Introduction 

In many production areas, digitization has become indispensable. There are numerous examples of this, starting 
with the networking of individual machines, followed by a number of practically proven applications (e.g., smart 
maintenance), and ending with still research-intensive autonomous robot solutions. The technological basis of such 
innovative applications is diverse – whether hardware-driven (e.g., sensor technology) or software-driven (e.g., 
artificial intelligence) [1,2]. Accordingly, technical universities and comparable institutions face an increasing demand 
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to study the technical innovations related to smart manufacturing in their laboratories and learning factories: first, they 
need to explore, operationalize and further develop technologies and respective applications. There are different focal 
points: while some schools are research-intensive and also conduct fundamental research, others have a focus on 
applied research. At most universities, this also influences the educational emphases in the course of research-led 
teaching. Second, research-based education needs to be continuously updated. Thus, teachers must either do research 
themselves and/or, via continuous, research-oriented lecturer training, elaborately familiarise themselves with the 
latest research achievements. This includes teaching materials and practical equipment for laboratory exercises [3,4]. 

 
Further, educational and research institutions need to continuously convert research findings into practical use cases 

and to deploy the insights in the course of research-driven teaching. The thematic spectrum is enormous – starting 
with production technologies, via robotics and mechatronics, M2M-communication, security issues, up to 
virtualization, business processes and the use of modern algorithms, especially machine learning [1,2,5]. This brings 
not only technical challenges, but also organizational issues: for example, the question arises which scientific fields 
are involved – typically robotics, mechatronics, automation technology, but also mathematics, statistics and 
informatics. As already seen in the term "mechatronics", the delimitation will often not be possible in terms of 
precision, as organizational responsibilities might try. What is needed is interdisciplinary cooperation. The same 
applies to non-technical questions within technology application and impact assessment: here, labor-sociological 
aspects and ergonomics, data security and protection, ethical considerations or economic calculations (to name only a 
few) play a major role. What is needed is interdisciplinary research, curriculum design and teaching orientation [3]. 

 
Thus, this contribution first explains the concept of the Digital Factory at the University of Applied Sciences Tech-

nikum Wien (UAS TW) as a vivid example for interdisciplinary higher education in robotics and smart manufacturing. 
Subsequently, two recent educational Digital Factory use cases are shown: the application of virtual engineering and 
machine learning. The discussion refers to various dimensions – from technical concepts including implementation 
aspects in a laboratory situation towards questions concerning teaching and didactics. The remainder of the paper is 
as follows: section 2 introduces the UAS TW Digital Factory. Section 3 presents the two case examples. Both, machine 
learning and virtual engineering, have positive impacts on manufacturing flexibility [6] and are therefore important in 
industrial engineering and educational practices (e.g., online-teaching). Section 4 provides a short conclusion. 

2. The Digital Factory at the University of Applied Sciences Technikum Wien 

This UAS TW Digital Factory operates with ~15 industrial robots from different manufacturers. To cover a wide 
variety of smart manufacturing topics, the robots are configured according to typical factory scenarios in an exemplary 
assembly process, including virtual and augmented reality applications. In addition to the “industrial” factory (hard- 
and software according to industrial standards), UAS TW has set-up a miniaturized digital factory (“Mini-Factory”). 

 

 

Fig. 1. Communication architecture of the UAS TW Digital Factory. 
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Both educational factories share the same communication architecture (Fig. 1), data model and system architecture. 
The data model is designed for a decentralized production where it is easy to integrate new machines by implementing 
the given interface. The production system consists of production machines (agents), components that collect the 
capabilities of these machines (skill-tracker) and components, that allocate production orders to available machines 
(production-tracker). The Mini-Factory consists of self-designed 3D-printed and laser-cut mechatronics and robotics 
stations. Thus, it is portable (e.g., for workshops). Due to the small size and low voltages, there is a significantly lower 
safety risk, compared to the industrial factory.  

 

 

Fig. 2. (a) “Industrial” Digital Factory; (b) “Mini-Factory”; (c) 3D-Printed Mini-Robot; (d) portable “Mini-Factory”. 

Both learning factories are easily reconfigurable (cp. for the Mini-Factory Fig. 2(b) with mobile robots and Fig. 
2(d) with conveyors). Of course, the complexity and the precision of the industrial robots are higher, compared to the 
miniaturized version. Yet, for educational purposes on bachelor-level, the experience from four years of teaching has 
given strong evidence that typical engineering student problems are similar for both physical factory instances. Further, 
the Mini-Factory turned out to be able to serve as a strong educational resource also on master level, when assigning 
adequate tasks, e.g., sensor fusion or the implementation of machine learning algorithms. The Mini-Factory is only 
limited in terms of some tasks, such as precise gripping, handling heavy weights and above all mechanical topics. The 
entire Digital Factory (industrial and miniature) has been modeled as a 3-dimensional model (see Fig. 3). Simulation 
software allows for the execution of operations within this virtual model of the Digital Factory. Thus, learners can 
virtually operate machines, control a robot, change its tools, or steer autonomous mobile robots in a virtual context. In 
particular, virtual reality techniques can be used for educational purposes, as well as for effective industrial 
performance optimization. A further application is the support of maintenance concepts, e.g., a defective technical 
component. Augmented reality provides additional information for the maintenance engineer, to correctly, cost 
efficiently and quickly, repair defects. Moreover, virtual engineering tools could serve for many further purposes by 
enriching a given equipment scenario with additional technical data, detailed process condition data or even 
architectural or layout-data for the case of a physical production device. This requires a mobile device (e.g., tablet, 
mobile phone, virtual reality glasses). An identifier allows to accurately trigger virtual reality software visualizing 
corresponding data. 

 
The UAS TW Digital Factory is equipped with multiple hardware and software to demonstrate the variety of 

technical options to practitioners and learners. Altogether, the different digital factory types can be applied for both, 
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research and education. Teaching concepts and learning tasks might be designed theory-driven, within industrial 
prototyping or based on research results. Subsequently, the achieved educational settings can be implemented in both 
instances – industrial and miniaturized factory (except tasks that cannot be easily scaled down for usage on small and 
less precise machinery, and hence are applied in the industrial factory exclusively). 

 

 

Fig. 3. Virtual Engineering in Robotics – the example of the Digital Factory at UAS Technikum Wien. 

3. Two educational use cases in the Digital Factory: machine learning and virtual engineering 

Both factories are used to carry out basic course exercises in robotics and mechatronics and for bachelor and master 
projects. Whereas the industrial factory also serves for industrial robotic applications (robot operation, kinematics, 
autonomous robots), the miniaturized factory is applied in workshops and for seminar groups with a high amount of 
participants. The virtual model and its applications can be used independently of time and location. In this regard, it is 
the most flexible learning resource. However, teaching experiences from the last two years have shown that virtual 
learning resources despite their vivid visualization and animation capabilities neglect certain effects that have to be 
handled in reality: for instance, within a virtual model, the components of a robot system move or change their status 
without physical reaction delay; similarly, all drives, wheels etc. are assumed to be 100% equal in the virtual model 
(unless one takes the effort to implement such reality effects by modeling and programming them with immense effort 
and questionable feasibility). Moreover, other than virtual devices, physical devices often have to be set-up physically 
(e.g., camera calibration). Thus real-world applications require different strategies. Summarizing, virtual engineering 
is a valuable tool in education as well as in practice but should replace physical experiments only partially. 

3.1. Learning algorithms in robotics 

Previously, robots were operated by means of fixed programs without any needs to react according to changing 
signals from the environment using sensor data processing. Currently, new applications in smart manufacturing are 
increasingly applying context-dependent control algorithms that are able to adapt for instance to differing objects to 
be gripped – depending on the location and the pose or other characteristics of the object [1,7]. Another exemplary 
application is any autonomous behavior of mechatronic systems, for example, autonomous driving (mobile robotics) 
or the execution of collaborative tasks together with humans (industrial robotics, service robotics) [8,9,10]. Typically, 
adaptive or learning behavior is implemented by means of machine learning methods applied to sensor data, e.g., a 
camera. For example, a robot could generate multiple pictures of an object to be grasped. For this purpose, a neural 
network would be trained with annotated pictures that correctly indicate the object and its pose to the robot system. 
The intention is to reduce manual and post-processing efforts to a minimum for object detection as well as for pose 
estimation. The described use case represents a typical setting [11,12,13,14,15] that has remained unsolved in many 
areas in the industry in terms of full automation: handling of materials and goods in warehouses, stores, etc. This use 
case requires an industrial robot, as object detection and grabbing accuracy require preciseness and identically 
repeatable robot movements. Further, the miniaturized robots are not able to carry the necessary workloads of objects 
to be detected and handled. The case can be used for educational content concerned with grasping approaches. 
Learning objectives in a robotics course could be for example to understand, explain and differentiate analytical from 
data-driven grasping methods, depending on a setting with well-known and less-known or even unknown objects. 
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Another learning objective could be the understanding of pose estimation methods (e.g., template-based, feature-based, 
voting-based, or learning-based) [16]. Also, topics with regard to deep learning and data-driven grasp-analysis [17,18] 
or learning content in the field of training data classification [19] could be supported by respective educational settings. 
Fig. 4 visualizes the setting of the aforementioned use case, as it was developed in the course of a master project in 
the Digital Factory of UAS Technikum Wien. 

 

 

Fig. 4. Use case example: adaptive mobile manipulator including frames and kinematic structure. 

The next steps to be conducted for this use case is the gaining of teaching experience with the developed learning 
materials, in particular videos, instructional texts, reflecting questions and further lab exercises. 

3.2. Virtual engineering 

Virtual reality (VR) and augmented reality (AR) applications are known for long [20,21]. Thus, they have been 
transferred into practical use due to the availability of powerful IT in the course of numerous industrial applications. 
Virtual engineering practices intend to apply engineering principles and to herewith use specific software when 
developing, testing or optimizing a product or a machine. Respective entrepreneurial goals are shortened system 
development cycles, reduced cost, risk and failure rates, as well as enhanced flexibility and adaptability. Hence, virtual 
engineering and virtual manufacturing seek to improve the design, the development and the systematic optimization 
of e.g., high-tech products or manufacturing devices, e.g., industrial robots, CNC-machines or transportation systems 
[6]. The application of virtual engineering is important in volatile environments that require agile procedures and rapid 
prototyping approaches [22]. Techniques such as virtual, augmented or mixed reality are also of great importance for 
teaching: If, for example, real-existing physical experiments could become dangerous for the learners or if the number 
of learners exceeds the laboratory capacity of a university, virtual engineering tools are a target-oriented supplement 
to teaching in the laboratory. A further application scenario of virtual techniques concerns the preparation and follow-
up of the subject matter by students: on the one hand, this requires a theory-based examination of relevant textbooks 
and research articles. On the other hand, VR- and AR- use cases can significantly improve the vividness of what has 
been learned, for example by allowing the students to view the effect of their control commands on the movement of 
a robot immediately as animation in the course of the virtual robot operation. This can be done without any potential 
danger from incorrect operation of heavy and fast industrial robots. In addition, it can be repeated as often as required, 
at any time and from any location, independent of the teaching resources of the teaching institute. The learners can 
adapt the time sequence individually to their learning speed, can interrupt at any time, can repeat difficult passages 
and can explore particularly interesting constellations. 

 
Today, digital VR- and AR-tools are broadly in use, in practical application as well as for educational purposes. 

Especially, simulation tools are in use that allow virtualizing most steps of the engineering approach. Also, 
maintenance operations can be supported by means of providing additional information for any object of the real world 
(e.g., through providing technical details for an installed device in the course of preventive maintenance or condition-
based monitoring concepts). This relies on two basic principles: at first, the integrated virtual modeling of objects and 
their parameters and at second, the ability to flexibly analyze different views of the respective device [23], based on a 
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shared data model that incorporates CAD parameters and system features. Here, education faces a severe challenge, 
as respective models are effortful in terms of development needs and have to be carefully inspected for reliability, 
validity and usability from a learner’s perspective when intending to provide effective educational resources and 
scenarios. For example, virtualized devices can be designed and tested virtually with regard to motion behavior, 
collision issues, vibration analysis [24]. However, not only modeling but as well the software usage is time consuming 
and requires skilled staff. Despite high development effort, the huge advantage of virtual resources is their ubiquitous 
applicability for learning topics and teaching settings of nearly all kinds. 

4. Conclusion 

As UAS TW actually develops enhanced elearning capabilities, especially virtual engineering strongly contributes 
to teaching. During class, students explore how even elaborate models differ from real system behaviour. E.g., real 
robot drives never rotate identically. In the digital model, such variances have to be modelled if a high deviation of 
simulated results is observed. In a long-term perspective, further empiric research should be done to determine whether 
the educational benefit versus the required effort. On the one hand our virtual models have enabled the virtual access 
of students from international partner universities in principle. On the other hand, the observation of the mentioned 
deviations offers important learning for future engineers. As there are more examples for the mutual interdependencies 
of physical and virtual labs, we recommend systematic empiric research regarding the question, how these phenomena 
could be classified and transferred into substantial academic teaching practice. 
 

Acknowledgements 

We thank the City of Vienna for supporting ENGINE and AIAV. We thank PTC for supporting virtual engineering. 

References 

[1] M. A. Roa, D. Berenson, W. Huang, Mobile manipulation: Toward smart manufacturing, IEEE Robotics Automation Magazine, 22(4), 2015. 
[2] I. Seilonen, T. Tuovinen, J. Elovaara, I. Tuomi, T. Oksanen, Aggregating OPC UA servers for monitoring manufacturing systems and mobile 

work machines, 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 2016. 
[3] A. Brew, Teaching and research: New relationships and their implications for inquiry-based teaching and learning in higher education. Higher 

Education Research and Development 31 (1), 2012, 101-114. 
[4] M. Elken, S. Wollscheid, The relationship between research and education: typologies and indicators: A literature review. Nordic Institute for 

Studies in Innovation, Research and Education (NIFU): Oslo, Norway, 2016. 
[5] C. Engelhardt-Nowitzki, M. Aburaia, E. Markl, Smart manufacturing in the digital factory – a practical case study of an industry 4.0 

implementation, in: EUROCAST, 2017, pp. 180–181. 
[6] P. Moore, J. Pu, H. Ng, C. Wong, S. Chong, X. Chen, J. Adolfsson, P. Olofsgård, J.-O. Lundgren, Virtual engineering: an integrated approach 

to agile manufacturing machinery design and control, Mechatronics, 13(10), 2003, 1105-1121. 
[7] J. Sturm, Approaches to Probabilistic Model Learning for Mobile Manipulation Robots, Springer Tracts in Advanced Robotics (STAR) 2013. 
[8] D. Pavlichenko, G. M. García, S. Koo, S. Behnke, Kittingbot: A mobile manipulation robot for collaborative kitting in automotive logistics, 

15th International Conference on Intelligent Autonomous Systems – IAS, 2018, 849-864. 
[9] Z.-E. Chebab, J.-C. Fauroux, N. Bouton, Y. Mezouar, L. Sabourin, Autonomous collaborative mobile manipulators: State of the art, in TrC-

IFToMM Symposium on Theory of Machines and Mechanisms, 2015. 
[10] U. Asif, M. Bennamoun, F. Sohel, Real-time pose estimation of rigid objects using RGB-D imagery, 8th ICIEA Conf., 2013, 1692-1699. 
[11] R. Kaskman, S. Zakharov, I. Shugurov, S. Ilic, HomebrewedDB: RGB-D dataset for 6D pose estimation of 3D objects, CoRR, 2019. 
[12] M. Garon, D. Laurendeau, J. Lalonde, A framework for evaluating 6-DOF object trackers, 15th Eur. Cnf. on Computer Vision, 2018, 608-623. 
[13] A. Tejani, D. Tang, R. Kouskouridas, T. K. Kim, Latent-class hough forests for 3D object detection and pose estimation, in 13th Eur. Conf. 

on Computer Vision, 2014, 462-477. 
[14] J. M. Wong, V. Kee, T. Le, S. Wagner, G. L. Mariottini, A. Schneider, L. Hamilton, R. Chipalkatty, M. Hebert, D. M. Johnson, J. Wu, B. 

Zhou, A. Torralba, SegICP: Integrated deep semantic segmentation and pose estimation, IROS Conf., 2017, 5784-5789. 
[15] P. C. Wu, Y. Y. Lee, H. Y. Tseng, H. I. Ho, M. H. Yang, S. Y. Chien, A benchmark dataset for 6DoF object pose tracking, in IEEE International 

Symposium on Mixed and Augmented Reality – ISMAR, 2017, 186-191. 
[16] G. Du, K. Wang, S. Lian, Vision-based robotic grasping from object localization, pose estimation, grasp detection to motion planning: A 

review, CoRR, 2019.  
[17] I. Lenz, H. Lee, A. Saxena, Deep learning for detecting robotic grasps, The Int. Journal of Robotics Research, 34(4-5), 705–724, 2015. 



	 Corinna Engelhardt-Nowitzki  et al. / Procedia Manufacturing 45 (2020) 164–170� 169
 Author name / Procedia Manufacturing 00 (2019) 000–000  5 
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voting-based, or learning-based) [16]. Also, topics with regard to deep learning and data-driven grasp-analysis [17,18] 
or learning content in the field of training data classification [19] could be supported by respective educational settings. 
Fig. 4 visualizes the setting of the aforementioned use case, as it was developed in the course of a master project in 
the Digital Factory of UAS Technikum Wien. 

 

 

Fig. 4. Use case example: adaptive mobile manipulator including frames and kinematic structure. 
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up of the subject matter by students: on the one hand, this requires a theory-based examination of relevant textbooks 
and research articles. On the other hand, VR- and AR- use cases can significantly improve the vividness of what has 
been learned, for example by allowing the students to view the effect of their control commands on the movement of 
a robot immediately as animation in the course of the virtual robot operation. This can be done without any potential 
danger from incorrect operation of heavy and fast industrial robots. In addition, it can be repeated as often as required, 
at any time and from any location, independent of the teaching resources of the teaching institute. The learners can 
adapt the time sequence individually to their learning speed, can interrupt at any time, can repeat difficult passages 
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(e.g., through providing technical details for an installed device in the course of preventive maintenance or condition-
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shared data model that incorporates CAD parameters and system features. Here, education faces a severe challenge, 
as respective models are effortful in terms of development needs and have to be carefully inspected for reliability, 
validity and usability from a learner’s perspective when intending to provide effective educational resources and 
scenarios. For example, virtualized devices can be designed and tested virtually with regard to motion behavior, 
collision issues, vibration analysis [24]. However, not only modeling but as well the software usage is time consuming 
and requires skilled staff. Despite high development effort, the huge advantage of virtual resources is their ubiquitous 
applicability for learning topics and teaching settings of nearly all kinds. 

4. Conclusion 

As UAS TW actually develops enhanced elearning capabilities, especially virtual engineering strongly contributes 
to teaching. During class, students explore how even elaborate models differ from real system behaviour. E.g., real 
robot drives never rotate identically. In the digital model, such variances have to be modelled if a high deviation of 
simulated results is observed. In a long-term perspective, further empiric research should be done to determine whether 
the educational benefit versus the required effort. On the one hand our virtual models have enabled the virtual access 
of students from international partner universities in principle. On the other hand, the observation of the mentioned 
deviations offers important learning for future engineers. As there are more examples for the mutual interdependencies 
of physical and virtual labs, we recommend systematic empiric research regarding the question, how these phenomena 
could be classified and transferred into substantial academic teaching practice. 
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