Journal article Open Access

Coherence Time Extension by Large-Scale Optical Spin Polarization in a Rare-Earth Doped Crystal

Welinski, Sacha; Tiranov, Alexey; Businger, Moritz; Ferrier, Alban; Afzelius, Mikael; Goldner, Philippe


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4081237</identifier>
  <creators>
    <creator>
      <creatorName>Welinski, Sacha</creatorName>
      <givenName>Sacha</givenName>
      <familyName>Welinski</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Tiranov,  Alexey</creatorName>
      <givenName>Alexey</givenName>
      <familyName>Tiranov</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Businger, Moritz</creatorName>
      <givenName>Moritz</givenName>
      <familyName>Businger</familyName>
      <affiliation>University of Geneva</affiliation>
    </creator>
    <creator>
      <creatorName>Ferrier, Alban</creatorName>
      <givenName>Alban</givenName>
      <familyName>Ferrier</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Afzelius, Mikael</creatorName>
      <givenName>Mikael</givenName>
      <familyName>Afzelius</familyName>
      <affiliation>University of Geneva</affiliation>
    </creator>
    <creator>
      <creatorName>Goldner, Philippe</creatorName>
      <givenName>Philippe</givenName>
      <familyName>Goldner</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Coherence Time Extension by Large-Scale Optical Spin Polarization in a Rare-Earth Doped Crystal</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>NanOQTech</subject>
    <subject>Quantum Technologies</subject>
    <subject>Rare earth</subject>
    <subject>Coherence time</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-16</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4081237</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1103/PhysRevX.10.031060</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Optically addressable spins are actively investigated in quantum communication, processing, and sensing. Optical and spin coherence lifetimes, which determine quantum operation fidelity and storage time, are often limited by spin-spin interactions, which can be decreased by polarizing spins. Spin polarization can be achieved using optical pumping, large magnetic fields, or mK-range temperatures. Here, we show that optical pumping of a small fraction of ions with a fixed-frequency laser, coupled with spin-spin interactions and spin diffusion, leads to substantial spin polarization in a paramagnetic rare-earth doped crystal,&amp;nbsp;171Yb3+∶Y2SiO5. Indeed, more than 90% spin polarization has been achieved at 2&amp;nbsp;K and zero magnetic field. Using this spin polarization mechanism, we further demonstrate an increase in optical coherence lifetime from 0.3&amp;nbsp;ms to 0.8&amp;nbsp;ms, due to a strong decrease in spin-spin interactions. This effect opens the way to new schemes for obtaining long optical and spin coherence lifetimes in various solid-state systems such as ensembles of rare-earth ions or color centers in diamond, which are of interest for a broad range of quantum technologies.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
77
17
views
downloads
Views 77
Downloads 17
Data volume 44.1 MB
Unique views 73
Unique downloads 16

Share

Cite as