Journal article Open Access
Harada, Nao; Ferrier, Alban; Serrano, Diana; Persechino, Mauro; Briand, Emrick; Bachelet, Romain; Vickridge, Ian; Ganem, Jean-Jacques; Goldner, Philippe; Tallaire, Alexandre
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="942" ind1=" " ind2=" "> <subfield code="a">2021-02-04</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Thin films</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">NanOQTech</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Quantum Technologies</subfield> </datafield> <controlfield tag="005">20210204122719.0</controlfield> <controlfield tag="001">4081219</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Ferrier, Alban</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Serrano, Diana</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Persechino, Mauro</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">INSP</subfield> <subfield code="a">Briand, Emrick</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">INL</subfield> <subfield code="a">Bachelet, Romain</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">INSP</subfield> <subfield code="a">Vickridge, Ian</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">INSP</subfield> <subfield code="a">Ganem, Jean-Jacques</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Goldner, Philippe</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Tallaire, Alexandre</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2438773</subfield> <subfield code="z">md5:820b188d19b9a1cdec6480743cbdaab4</subfield> <subfield code="u">https://zenodo.org/record/4081219/files/Chemically_Vapour_Deposited_Eu3__Y2O3_thin_films_as_a_material_platform_for_quantum_technologies-Highlighted.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-08-04</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-nanoqtech-h2020</subfield> <subfield code="p">user-square</subfield> <subfield code="o">oai:zenodo.org:4081219</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Harada, Nao</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Chemically vapor deposited Eu3+:Y2O3 thin films as a material platform for quantum technologies</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-nanoqtech-h2020</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-square</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">820391</subfield> <subfield code="a">Scalable Rare Earth Ion Quantum Computing Nodes</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">712721</subfield> <subfield code="a">Nanoscale Systems for Optical Quantum Technologies</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Rare earth ions hosted in solids are good candidates for quantum technologies due to their chemical stability and optical and spin transitions exhibiting long coherence lifetimes. While bulk oxide crystals are usually the preferred host material, the development of a scalable silicon-compatible thin film platform would be desirable. In this paper, we report on the growth of Y<sub>2(1&minus;x)</sub>Eu<sub>2x</sub>O<sub>3</sub>&nbsp;thin films on silicon in the full range of Eu<sup>3+</sup>&nbsp;concentration by direct liquid injection chemical vapor deposition (CVD). Our sub-micrometer polycrystalline films with a strong-(111) texture were grown for all compositions into the bixbyite cubic phase. The variation of growth rates with temperature and flow indicated that deposition occurred through a mass-transport controlled regime. Optical assessment of the Eu-doped thin films showed inhomogeneous linewidths as narrow as 50&thinsp;GHz and fluorescence lifetimes of 1&thinsp;ms for the lowest concentrations. Finally, a spectral hole was successfully burned in a 200&thinsp;nm-thin film with a 2% Eu doping leading to a homogeneous linewidth of 11&thinsp;MHz. These values are still below those reported for bulk single crystals indicating that additional decoherence mechanisms exist in such nanometric films, which might be alleviated by further improvement of the crystalline quality. Nevertheless, these results pave the way to the use of CVD-grown Eu:Y<sub>2</sub>O<sub>3</sub>&nbsp;thin films as a platform for integrated quantum devices.</p> <p>&nbsp;</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1063/5.0010833</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 69 |
Downloads | 42 |
Data volume | 102.4 MB |
Unique views | 57 |
Unique downloads | 38 |