Journal article Open Access
Liu, Shuping; Fossati, Alexandre; Serrano, Diana; Tallaire, Alexandre; Ferrier, Alban; Goldner, Philippe
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="942" ind1=" " ind2=" "> <subfield code="a">2020-12-22</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Nanoparticles</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Rare earth</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">NanOQTech</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Quantum Technologies</subfield> </datafield> <controlfield tag="005">20201222122715.0</controlfield> <controlfield tag="001">4081028</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Fossati, Alexandre</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Serrano, Diana</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Tallaire, Alexandre</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Ferrier, Alban</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Goldner, Philippe</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">24391935</subfield> <subfield code="z">md5:043eca422c81de9b883fe3a209b3d482</subfield> <subfield code="u">https://zenodo.org/record/4081028/files/manuscript_SPL_final.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-07-22</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-nanoqtech-h2020</subfield> <subfield code="o">oai:zenodo.org:4081028</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">IRCP</subfield> <subfield code="a">Liu, Shuping</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Defect Engineering for Quantum Grade Rare-Earth Nanocrystals</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-nanoqtech-h2020</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">712721</subfield> <subfield code="a">Nanoscale Systems for Optical Quantum Technologies</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Nanostructured systems that combine optical and spin transitions offer new functionalities for quantum technologies by providing efficient quantum light&ndash;matter interfaces. Rare-earth (RE) ion-doped nanoparticles are promising in this field as they show long-lived optical and spin quantum states. However, further development of their use in highly demanding applications, such as scalable single-ion-based quantum processors, requires controlling defects that currently limit coherence lifetimes. In this work, we show that a post-treatment process that includes multistep high-temperature annealing followed by high-power microwave oxygen plasma processing advantageously improves key properties for quantum technologies. We obtain single crystalline Eu<sup>3+</sup>:Y<sub>2</sub>O<sub>3</sub>&nbsp;nanoparticles (NPs) of 100 nm diameter, presenting bulk-like inhomogeneous line widths (&Gamma;<sub>inh</sub>) and population lifetimes (<em>T</em><sub>1</sub>). Furthermore, a significant coherence lifetime (<em>T</em><sub>2</sub>) extension, up to a factor of 5, is successfully achieved by modifying the oxygen-related point defects in the NPs by the oxygen plasma treatment. These promising results confirm the potential of engineered RE NPs to integrate devices such as cavity-based single-photon sources, quantum memories, and processors. In addition, our strategy could be applied to a large variety of oxides to obtain outstanding crystalline quality NPs for a broad range of applications.</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1021/acsnano.0c02971</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 39 |
Downloads | 26 |
Data volume | 634.2 MB |
Unique views | 34 |
Unique downloads | 25 |