Journal article Open Access

Defect Engineering for Quantum Grade Rare-Earth Nanocrystals

Liu, Shuping; Fossati, Alexandre; Serrano, Diana; Tallaire, Alexandre; Ferrier, Alban; Goldner, Philippe


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/bc7c5dbd-e3c3-44c6-a434-866c2993ece4/manuscript_SPL_final.pdf"
      }, 
      "checksum": "md5:043eca422c81de9b883fe3a209b3d482", 
      "bucket": "bc7c5dbd-e3c3-44c6-a434-866c2993ece4", 
      "key": "manuscript_SPL_final.pdf", 
      "type": "pdf", 
      "size": 24391935
    }
  ], 
  "owners": [
    26164
  ], 
  "doi": "10.1021/acsnano.0c02971", 
  "stats": {
    "version_unique_downloads": 25.0, 
    "unique_views": 34.0, 
    "views": 39.0, 
    "version_views": 39.0, 
    "unique_downloads": 25.0, 
    "version_unique_views": 34.0, 
    "volume": 634190310.0, 
    "version_downloads": 26.0, 
    "downloads": 26.0, 
    "version_volume": 634190310.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1021/acsnano.0c02971", 
    "latest_html": "https://zenodo.org/record/4081028", 
    "bucket": "https://zenodo.org/api/files/bc7c5dbd-e3c3-44c6-a434-866c2993ece4", 
    "badge": "https://zenodo.org/badge/doi/10.1021/acsnano.0c02971.svg", 
    "html": "https://zenodo.org/record/4081028", 
    "latest": "https://zenodo.org/api/records/4081028"
  }, 
  "created": "2020-10-12T09:06:51.449639+00:00", 
  "updated": "2020-12-22T12:27:15.509243+00:00", 
  "conceptrecid": "4081027", 
  "revision": 5, 
  "id": 4081028, 
  "metadata": {
    "access_right_category": "success", 
    "embargo_date": "2020-12-22", 
    "doi": "10.1021/acsnano.0c02971", 
    "version": "1", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Defect Engineering for Quantum Grade Rare-Earth Nanocrystals", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4081027"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4081028"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "nanoqtech-h2020"
      }
    ], 
    "grants": [
      {
        "code": "712721", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::712721"
        }, 
        "title": "Nanoscale Systems for Optical Quantum Technologies", 
        "acronym": "NanOQTech", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Nanoparticles", 
      "Rare earth", 
      "NanOQTech", 
      "Quantum Technologies"
    ], 
    "publication_date": "2020-07-22", 
    "creators": [
      {
        "affiliation": "IRCP", 
        "name": "Liu, Shuping"
      }, 
      {
        "affiliation": "IRCP", 
        "name": "Fossati, Alexandre"
      }, 
      {
        "affiliation": "IRCP", 
        "name": "Serrano, Diana"
      }, 
      {
        "affiliation": "IRCP", 
        "name": "Tallaire, Alexandre"
      }, 
      {
        "affiliation": "IRCP", 
        "name": "Ferrier, Alban"
      }, 
      {
        "affiliation": "IRCP", 
        "name": "Goldner, Philippe"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "description": "<p>Nanostructured systems that combine optical and spin transitions offer new functionalities for quantum technologies by providing efficient quantum light&ndash;matter interfaces. Rare-earth (RE) ion-doped nanoparticles are promising in this field as they show long-lived optical and spin quantum states. However, further development of their use in highly demanding applications, such as scalable single-ion-based quantum processors, requires controlling defects that currently limit coherence lifetimes. In this work, we show that a post-treatment process that includes multistep high-temperature annealing followed by high-power microwave oxygen plasma processing advantageously improves key properties for quantum technologies. We obtain single crystalline Eu<sup>3+</sup>:Y<sub>2</sub>O<sub>3</sub>&nbsp;nanoparticles (NPs) of 100 nm diameter, presenting bulk-like inhomogeneous line widths (&Gamma;<sub>inh</sub>) and population lifetimes (<em>T</em><sub>1</sub>). Furthermore, a significant coherence lifetime (<em>T</em><sub>2</sub>) extension, up to a factor of 5, is successfully achieved by modifying the oxygen-related point defects in the NPs by the oxygen plasma treatment. These promising results confirm the potential of engineered RE NPs to integrate devices such as cavity-based single-photon sources, quantum memories, and processors. In addition, our strategy could be applied to a large variety of oxides to obtain outstanding crystalline quality NPs for a broad range of applications.</p>"
  }
}
39
26
views
downloads
Views 39
Downloads 26
Data volume 634.2 MB
Unique views 34
Unique downloads 25

Share

Cite as