Journal article Open Access
Liu, Shuping; Fossati, Alexandre; Serrano, Diana; Tallaire, Alexandre; Ferrier, Alban; Goldner, Philippe
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/4081028</identifier> <creators> <creator> <creatorName>Liu, Shuping</creatorName> <givenName>Shuping</givenName> <familyName>Liu</familyName> <affiliation>IRCP</affiliation> </creator> <creator> <creatorName>Fossati, Alexandre</creatorName> <givenName>Alexandre</givenName> <familyName>Fossati</familyName> <affiliation>IRCP</affiliation> </creator> <creator> <creatorName>Serrano, Diana</creatorName> <givenName>Diana</givenName> <familyName>Serrano</familyName> <affiliation>IRCP</affiliation> </creator> <creator> <creatorName>Tallaire, Alexandre</creatorName> <givenName>Alexandre</givenName> <familyName>Tallaire</familyName> <affiliation>IRCP</affiliation> </creator> <creator> <creatorName>Ferrier, Alban</creatorName> <givenName>Alban</givenName> <familyName>Ferrier</familyName> <affiliation>IRCP</affiliation> </creator> <creator> <creatorName>Goldner, Philippe</creatorName> <givenName>Philippe</givenName> <familyName>Goldner</familyName> <affiliation>IRCP</affiliation> </creator> </creators> <titles> <title>Defect Engineering for Quantum Grade Rare-Earth Nanocrystals</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Nanoparticles</subject> <subject>Rare earth</subject> <subject>NanOQTech</subject> <subject>Quantum Technologies</subject> </subjects> <dates> <date dateType="Issued">2020-07-22</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4081028</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1021/acsnano.0c02971</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier> </relatedIdentifiers> <version>1</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Nanostructured systems that combine optical and spin transitions offer new functionalities for quantum technologies by providing efficient quantum light&ndash;matter interfaces. Rare-earth (RE) ion-doped nanoparticles are promising in this field as they show long-lived optical and spin quantum states. However, further development of their use in highly demanding applications, such as scalable single-ion-based quantum processors, requires controlling defects that currently limit coherence lifetimes. In this work, we show that a post-treatment process that includes multistep high-temperature annealing followed by high-power microwave oxygen plasma processing advantageously improves key properties for quantum technologies. We obtain single crystalline Eu<sup>3+</sup>:Y<sub>2</sub>O<sub>3</sub>&nbsp;nanoparticles (NPs) of 100 nm diameter, presenting bulk-like inhomogeneous line widths (&Gamma;<sub>inh</sub>) and population lifetimes (<em>T</em><sub>1</sub>). Furthermore, a significant coherence lifetime (<em>T</em><sub>2</sub>) extension, up to a factor of 5, is successfully achieved by modifying the oxygen-related point defects in the NPs by the oxygen plasma treatment. These promising results confirm the potential of engineered RE NPs to integrate devices such as cavity-based single-photon sources, quantum memories, and processors. In addition, our strategy could be applied to a large variety of oxides to obtain outstanding crystalline quality NPs for a broad range of applications.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber> <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 39 |
Downloads | 26 |
Data volume | 634.2 MB |
Unique views | 34 |
Unique downloads | 25 |