Journal article Open Access

Defect Engineering for Quantum Grade Rare-Earth Nanocrystals

Liu, Shuping; Fossati, Alexandre; Serrano, Diana; Tallaire, Alexandre; Ferrier, Alban; Goldner, Philippe


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4081028</identifier>
  <creators>
    <creator>
      <creatorName>Liu, Shuping</creatorName>
      <givenName>Shuping</givenName>
      <familyName>Liu</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Fossati, Alexandre</creatorName>
      <givenName>Alexandre</givenName>
      <familyName>Fossati</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Serrano, Diana</creatorName>
      <givenName>Diana</givenName>
      <familyName>Serrano</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Tallaire, Alexandre</creatorName>
      <givenName>Alexandre</givenName>
      <familyName>Tallaire</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Ferrier, Alban</creatorName>
      <givenName>Alban</givenName>
      <familyName>Ferrier</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
    <creator>
      <creatorName>Goldner, Philippe</creatorName>
      <givenName>Philippe</givenName>
      <familyName>Goldner</familyName>
      <affiliation>IRCP</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Defect Engineering for Quantum Grade Rare-Earth Nanocrystals</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Nanoparticles</subject>
    <subject>Rare earth</subject>
    <subject>NanOQTech</subject>
    <subject>Quantum Technologies</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-07-22</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4081028</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1021/acsnano.0c02971</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Nanostructured systems that combine optical and spin transitions offer new functionalities for quantum technologies by providing efficient quantum light&amp;ndash;matter interfaces. Rare-earth (RE) ion-doped nanoparticles are promising in this field as they show long-lived optical and spin quantum states. However, further development of their use in highly demanding applications, such as scalable single-ion-based quantum processors, requires controlling defects that currently limit coherence lifetimes. In this work, we show that a post-treatment process that includes multistep high-temperature annealing followed by high-power microwave oxygen plasma processing advantageously improves key properties for quantum technologies. We obtain single crystalline Eu&lt;sup&gt;3+&lt;/sup&gt;:Y&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;&amp;nbsp;nanoparticles (NPs) of 100 nm diameter, presenting bulk-like inhomogeneous line widths (&amp;Gamma;&lt;sub&gt;inh&lt;/sub&gt;) and population lifetimes (&lt;em&gt;T&lt;/em&gt;&lt;sub&gt;1&lt;/sub&gt;). Furthermore, a significant coherence lifetime (&lt;em&gt;T&lt;/em&gt;&lt;sub&gt;2&lt;/sub&gt;) extension, up to a factor of 5, is successfully achieved by modifying the oxygen-related point defects in the NPs by the oxygen plasma treatment. These promising results confirm the potential of engineered RE NPs to integrate devices such as cavity-based single-photon sources, quantum memories, and processors. In addition, our strategy could be applied to a large variety of oxides to obtain outstanding crystalline quality NPs for a broad range of applications.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
39
26
views
downloads
Views 39
Downloads 26
Data volume 634.2 MB
Unique views 34
Unique downloads 25

Share

Cite as