Conference paper Open Access

Vessel detection using image processing and Neural Networks

Konstantina Bereta; Raffaele Grasso; Dimitris Zissis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CNN</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Vessel detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Satellite data</subfield>
  </datafield>
  <controlfield tag="005">20201009122654.0</controlfield>
  <controlfield tag="001">4074815</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">September 26- October 2</subfield>
    <subfield code="g">IEEE IGARSS 2020</subfield>
    <subfield code="a">2020 IEEE International Geoscience and Remote Sensing Symposium</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NATO-STO-CMRE</subfield>
    <subfield code="a">Raffaele Grasso</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of the Aegean, MarineTraffic</subfield>
    <subfield code="a">Dimitris Zissis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">397201</subfield>
    <subfield code="z">md5:a485f18e12dc850836461d0dd060951c</subfield>
    <subfield code="u">https://zenodo.org/record/4074815/files/SAT_IGARSS_2020-2.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://igarss2020.org</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-09</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-infore-project</subfield>
    <subfield code="o">oai:zenodo.org:4074815</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">MarineTraffic</subfield>
    <subfield code="a">Konstantina Bereta</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Vessel detection using image processing and Neural Networks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-infore-project</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825070</subfield>
    <subfield code="a">Interactive Extreme-Scale Analytics and Forecasting</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The establishment of the Automatic Identification System (AIS) &amp;nbsp;was revolutionary for Maritime Situational Awareness, as it allowed for&amp;nbsp;the&amp;nbsp;tracking of vessels carrying an AIS transponder, which is mandatory for, and not limited to, the majority of the commercial fleet. Despite the benefits of the widespread use of AIS &amp;nbsp;for navigational safety and global maritime security, one cannot depend only on AIS sources in order to obtain the complete maritime situational awareness picture. In this paper &amp;nbsp;we describe a multistage data-centric workflow that integrates satellite optical imagery and AIS data for automatic vessel detection that builds on (i) image processing techniques and (ii) Convolutional Neural networks. The experimental evaluation of our approach shows that&amp;nbsp;our framework achieves an accuracy greater than 95%.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4074814</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4074815</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
90
128
views
downloads
All versions This version
Views 9090
Downloads 128128
Data volume 50.8 MB50.8 MB
Unique views 7878
Unique downloads 116116

Share

Cite as