Conference paper Open Access

Vessel detection using image processing and Neural Networks

Konstantina Bereta; Raffaele Grasso; Dimitris Zissis


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4074815</identifier>
  <creators>
    <creator>
      <creatorName>Konstantina Bereta</creatorName>
      <affiliation>MarineTraffic</affiliation>
    </creator>
    <creator>
      <creatorName>Raffaele Grasso</creatorName>
      <affiliation>NATO-STO-CMRE</affiliation>
    </creator>
    <creator>
      <creatorName>Dimitris Zissis</creatorName>
      <affiliation>University of the Aegean, MarineTraffic</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Vessel detection using image processing and Neural Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>CNN</subject>
    <subject>Vessel detection</subject>
    <subject>Satellite data</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-10-09</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4074815</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4074814</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/infore-project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The establishment of the Automatic Identification System (AIS) &amp;nbsp;was revolutionary for Maritime Situational Awareness, as it allowed for&amp;nbsp;the&amp;nbsp;tracking of vessels carrying an AIS transponder, which is mandatory for, and not limited to, the majority of the commercial fleet. Despite the benefits of the widespread use of AIS &amp;nbsp;for navigational safety and global maritime security, one cannot depend only on AIS sources in order to obtain the complete maritime situational awareness picture. In this paper &amp;nbsp;we describe a multistage data-centric workflow that integrates satellite optical imagery and AIS data for automatic vessel detection that builds on (i) image processing techniques and (ii) Convolutional Neural networks. The experimental evaluation of our approach shows that&amp;nbsp;our framework achieves an accuracy greater than 95%.&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825070/">825070</awardNumber>
      <awardTitle>Interactive Extreme-Scale Analytics and Forecasting</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
106
167
views
downloads
All versions This version
Views 106106
Downloads 167167
Data volume 66.3 MB66.3 MB
Unique views 9494
Unique downloads 153153

Share

Cite as