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Abstract 

 

There is a high variability in Covid-19 related deaths whose origin is unclear. We used 

three variables, percent test-standardized number of SARS-CoV-2-cases in a country, 

influenza-vaccination coverage in the elderly in a country and number of non-pharmaceutical 

interventions, to predict the number of population standardized Covid-19 related deaths in 

European countries, using generalized linear models. With these variables we can clarify 

approximately 60% of the variation in Covid-19 related deaths, with flu-vaccination coverage 

in the elderly being the most important predictor, explaining nearly 30% of the variation. 

Thus, the higher the influenza vaccination coverage in the elderly in a country, the more 

Covid-19 related deaths we see. Also, the more non-pharmaceutical interventions, the more 

deaths are likely, explaining about 5% of the variation. Other variables, like life-expectancy, 

rapidity of a country’s reaction to the epidemic and population size did not emerge as 

significant predictors. Thus, contrary to current opinion, flu-vaccination in the elderly might 

be an aggravating factor, when it comes to Covid-19 related deaths. 
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Influenza Vaccination Rates Predict 30% of the 
Variance in Covid-19 Related Deaths in Europe – A Modeling 

Approach 
 

Introduction 

 

Current public opinion seems to assume that a death following the infection with 

SARS-Corona-Virus 2 (CoV2) is largely due to this virus, because of its virulence. Untreated 

Covid-19 disease may lead to severe atypical pneumonia 1,2, a cytokine storm and other 

potentially lethal sequelae 3-5. Other potential factors, such as host factors or population 

factors, are not much considered. We know that initially mostly elderly patients with a mean 

age above 70 years have been severely affected 6-8. But in due course also younger patients 

became severely ill. However, there is a wide variation across countries and regions. This 

variation is partially shrouded by the fact that most agencies and their dashboards propagate 

unstandardized figures of cases and deaths. A recent publication that estimated excess death 

rates in the US during the time of the CoV2 pandemic as compared with the same months of 

previous years reveals a wide variation from -71,9 deaths per 100.000 inhabitants in North 

Dakota to 299,1 deaths per 100.000 inhabitants in New York City 9, with seven states actually 

exhibiting less excess mortality than in the previous comparison years, and 12 US states 

presenting with excess mortality figures below 10 per 100.000 inhabitants. The same is true for 

Europe: Miles and colleagues 10, citing various sources, list excess deaths of 21% for Spain, 

20% for the UK, 18% for Italy down to 6% for Sweden, 3% for Portugal, -1% for Germany, -

3% for Denmark and -4% for Norway. Inspecting the European Mortality Database  

(https://www.euromomo.eu/graphs-and-maps) one can see a large, but very sharp peak in 

excess mortality of 88.598 at the peak across all European countries that exceeds every other 

peak by a z-score of 56,68 and thus is without doubt a clear sign of excess mortality during the 

weeks 8 to 22 of 2020, but looking at single countries one can see again that this peak is 

mainly due to excess deaths in Belgium, France, Italy, Spain, Netherlands and the UK, and to 

some degree in Sweden and Ireland, while in other countries there is rather a negative excess 

of mortality. This is so despite the fact that some of the severely affected countries, like Spain, 

Italy, France have imposed severe restrictions on their populations, banned gatherings and 

issued stay-at-home orders, while others that have comparatively mild figures of excess deaths 

like Sweden or negative excess deaths like Norway have ordered less or no restrictions.  

Thus, there is clearly a need to identify other drivers of mortality than the infection 

itself, or rather, to understand what might mediate the course from infection to death. Are 

there population variables, public health variables, or host factors that can be identified that 

make this variation understandable? This was the guiding question of this modeling study. In a 

companion paper 11 we used data from the European Center for Disease Prevention as of 15th 

of May. We found that the main predictors of CoV2-Cases are life-expectancy, i.e. age, 

number of tests, and the fact whether borders were closed or not, and that the main predictors 

of Covid-19 related deaths are again life-expectancy, the time the virus had been in the 

country and school closures, which was a positive, i.e. accelerating predictor. This study used a 

diverse set of countries, and a point can be raised that not all of them had reliable data at the 

time, and also that the 15th of May was somewhat early. Meanwhile an interesting paper 

showed that the influenza vaccination rate in the elderly was significantly correlated at r = .68 

with Covid-19 related deaths in Europe 12. This, and further developments prompted us to 
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repeat our modeling exercise with a different set of countries and data. We used exclusively 

European data as published on the site “Worldometers” 

(https://www.worldometers.info/coronavirus/#countries) as of 30th of August, restricted the 

analysis to standardized deaths (cases per 1 million inhabitants as presented by the database 

and checked against population size), and used as predictors test-standardized case numbers, 

population and life-expectancy data, as well as influenza vaccination rates, the number of 

non-pharmaceutical measures and the rapidity of action in a country as predictors. We found 

that the most important predictor is the percentage of flu-vaccination rate in the elderly 

(explaining about 30% of the variance), followed by the test-standardized number of cases 

(explaining another 26% of the variance) with number of non-pharmaceutical interventions 

as a positive, i.e. accelerating predictor, explaining 7% of the variance. 

 

Results 

 

The results of the generalized linear models assuming a Gamma distribution for the 

outcome variable are presented in Table 1, using the full model with all predictors, the two 

simplest models with only one predictor (influenza vaccination coverage and test-standardized 

number of cases, respectively), and the best model with three significant predictors. It is 

obvious that the full model using all predictors had a slightly worse fit than the best model 

(Akaike Information Criterion - AIC =446.9 versus 444.9). The most parsimonious models 

that would assume that Covid-19 related deaths are only driven by flu vaccination coverage or 

the number of infections, respectively, are obviously too simple and had comparatively bad fits 

(AIC = 467.1 for flu vaccination coverage and AIC=478.1 for test-standardized number of 

cases). The three parameters that are useful predictors are the flu-vaccination rate in the 

elderly, the number of test-standardized cases and the number of NPIs (model 4 in Table 1). 

Note that all three parameters are positive, i.e. we see more deaths in countries with more 

test-standardized cases, which is expected, and in countries with a higher flu-vaccination 

coverage and a greater number of political interventions, which is counter-intuitive. Thereby, 

the flu vaccination rate was able to explain most of the variance with a Kullback-Leibler-based 

R2 value of 0.323 (adjusted 0.304)13, which was further increased by 0.26 by adding the test-

standardized cases as a predictor (Table 1).  

For a more natural interpretation on the amount of variance that could be explained 

by the various predictors, we also calculated a standard multiple linear regression model on 

the ln-transformed outcome. The result for the best model built via feature forward selection 

is given in Table 2. The stepwise procedure used again flu vaccination rate as the strongest 

predictor first, which explains 28% of the variance, followed by test-standardized cases, which 

explains another 25% of the variance, and finally the number of NPIs, which explains an 

additional 7% of the variance. Note that the results replicate the Gamma-generalized linear 

model (Table 1) in strength and sequence of the predictors. In addition, this last model gives 

us a more widely known estimation of the variance explained. The full model explains 57% of 

the variance (R2
adj. = 0.57), very similar to the corresponding Gamma-generalized linear 

model (Kulback-Leibler-based R2
adj.  = 0.60). 

Residual diagnostics (inspection of normal-probability plots, residual distribution, 

distributions of predicted versus observed values) confirmed that the models were adequate. 

After removal of the outlier Albania the linearity assumptions were met. 
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Table 1 – Result of generalized linear models (intercept not reported) 

 

Model 1 – 

Full Model 

Parameters Goodness-of-fit 

Variables Coefficient 

Estimate (SE) 

Standardized 

regression 

coefficient 

estimate (SE) 

p-value KL-R2 KL- 

R2
adj.

 

AIC Log 

likelihood 

Deviance/DF 

Flu 

vaccination 

coverage (%) 

0.0260 (0.0062) 0.615 (0.147) 2.22×10-4 0.673 0.610 446.9 -215.46 1.81 

Test-

standardized 

cases (%) 

0.239 (0.042) 0.581 (0.103) 3.58×10-6 

Number of 

NPIs 

0.158 (0.078) 0.240 (0.118) 0.051 

Life 

expectancy 

(years) 

0.069 (0.038) 0.231 (0.129) 0.083 

Rapidity of 

reaction 

(days) 

0.0086 (0.012) 0.128 (0.176) 0.473 

Population 

size (106) 

5.8×10-4 

(5.7×10-3) 

0.018 (0.172) 0.919 

         

Model 2 – 

Best 

univariable 

Model 

Parameters Goodness-of-fit 

Variable Coefficient 

Estimate (SE) 

Standardized 

regression 

coefficient 

p-value KL-R2 KL- 

R2
adj. 

AIC Log 

likelihood 

Deviance/DF 



5 

 

estimate (SE) 

Flu 

vaccination 

coverage (%) 

0.0266 (0.006) 0.629 (0.143) 9.18×10-5 0.323 0.304 467.1 -230.53 10.00 

         

Model 3 – 

2
nd

-best 

univariable 

Model 

Parameters Goodness-of-fit 

Variable Coefficient 

Estimate (SE) 

Standardized 

regression 

coefficient 

estimate (SE) 

p-value KL-R2 KL- 

R2
adj. 

AIC Log 

likelihood 

Deviance/DF 

Test-

standardized 

cases (%) 

0.197 (0.074) 0.478 (0.179) 0.012 0.127 0.103 478.1 -236.04 12.89 

      

Model 4 – 

Best Model 

Parameters Goodness-of-fit 

Variables Coefficient 

Estimate (SE) 

Standardized 

regression 

coefficient 

estimate (SE) 

p-value KL-R2 KL-

R2
adj. 

AIC Log 

likelihood 

Deviance/DF 

Flu 

vaccination 

coverage (%) 

0.035 (0.004) 0.827 (0.106) 4.18×10-9 0.323 0.304 444.9 -217.43 3.20 

Test-

standardized 

cases (%) 

0.238 (0.041) 0.579 (0.099) 1.35×10-6 0.583 0.559 

Number of 

NPIs 

0.189 (0.069) 0.288 (0.105) 0.0096 0.639 0.608 

AIC: Akaike Information Criterion; KL-R2: Kullback-Leibler-based R2; KL-R2
adj: adjusted Kullback-Leibler-based R2; SE: Standard error 
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Table 2 - Result of multiple linear regression of the three predictors (intercept not reported) from best model on ln-transformed outcome: 
Model R2

adj. = 0.574, F(3/34) = 17.64, p = 4.4 × 10-7 

Variable Regression coefficient 

(SE) 

Standardized 

regression 

coefficient 

estimate (SE) 

t (34) p-value R2 Change in R2 

Flu vaccination 

coverage (%) 

0.0344 (0,006) 0.813 (0.134) 6.07 7.04×10-7 0,28 0,28 

Test standardized cases 

(%) 

0.24 (0,05) 0.588 (0.125) 4.68 4.40×10-5 0,54 0,25 

Number of NPIs 0.22 (0,08) 0.332 (0.133) 2.50 0.0176 0,61 0,07 

SE: Standard error 
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Discussion 
 

This modeling exercise, predicting Covid-19 related death rates in European countries, 
unravels some interesting findings: 

a) Unsurprisingly, test-standardized CoV2-cases predict the number of deaths. This 
variable explains about 25% of the variance. 

b) Surprisingly, more important is the flu-vaccination coverage in the elderly: the 
higher this vaccination rate is, the more Covid-19 related deaths we see in a 
country. This is even more important than the number of cases and explains about 
30% of the variance. 

These findings are strengthened by the fact that two different models reach the same 
conclusions: a generalized linear model predicting a gamma-distributed outcome variable with 
log-linked predictors and a standard multiple linear regression model with identity link 
functions of predictors on a log-transformed outcome variable. The best model also includes 
the number of non-pharmaceutical interventions as a positive predictor, i.e. there are more 
deaths in countries with more NPIs implemented. This predictor explains roughly another 5% 
of the variation. It is reassuring that both models reach the same conclusions in terms of 
importance and sequence of the predictor variables. 

How might these findings be explained? It is easy to understand that more CoV2 cases 
translate into more Covid-19 related deaths. What is unexpected is the fact that the 
importance of this predictor is comparatively minor. That such a model is too simple can be 
seen when comparing the three models (full model 1, simple model 3 and adequate model 4) 
in Table 1. The univariable model 3 using only number of test-standardized cases is not 
adequate and produces the worst fit of all models. Thus, obviously, there remains variance to 
be explained. Far from assuming that we have captured all variables, we have captured at least 
some and thus are able to explain about 60% of the total variance with these variables. Most 
surprising and most counterintuitive are the two findings that there are more Covid-19 related 
deaths in countries with higher flu vaccination coverage in the elderly, and, in addition, that 
the number of non-pharmaceutical interventions is a positive predictor of Covid-19 related 
deaths. 

How can this negative impact be explained? A meta-analysis of 60 influenza outbreaks 
in care homes for the elderly found that the attack rate varied widely from 1.3% to 65%, 
mostly dependent on non-pharmaceutical and some pharmaceutical interventions 14. But the 
influenza vaccination rate was unrelated to attack rate. Although the influenza vaccination 
rate increased over the years, the attack rate did not decrease. A careful randomized trial of 
flu vaccination in children showed that children who were vaccinated against influenza were 
better protected against influenza but suffered a fourfold risk of other respiratory virus 
dependent diseases 15. This might have to do with unknown mechanisms that disturb the 
ecology of pathogens, known as the virus interference phenomenon. A study conducted 
during the 2017/2018 influenza season revealed that flu vaccination was associated with a 
36% increased odds of contracting respiratory coronavirus diseases (odds ratio 95% confidence 
interval 1.14-1.63, p<0.01), while affording specific protection against influenza and 
parainfluenza viruses16. A recent study showed that influenza vaccination in people over 65 
was ineffective in preventing mortality or hospitalizations due to influenza 17.  
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Thus, the negative impact of flu vaccination might have to do with several 
mechanisms: First, the virus interference phenomenon as shown for non-CoV2 
coronaviruses16; second, the fact that the immunological load on an organism that has to deal 
with a flu vaccine binds resources that cannot be mustered against a new and dangerous 
pathogen like CoV2. Third, it might also be the case that immune-enhancers in vaccines, 
such as aluminum derivates, which are potentially toxic, burden the organism and hamper 
natural immunity. It has been shown that aluminum toxicity is a widely underreported and 
unrecognized issue 18-20. Thus, widely propagated flu vaccination programs, especially for the 
elderly, might be problematic when at the same time another pathogen, such as CoV2, is 
arriving that needs the full prowess of the immunity of a population. Furthermore, it has been 
argued that influenza vaccines are produced in eggs and other cell-systems that are not 
routinely tested against corona-viruses. Hence, corona-virus proteins from other corona-
viruses might be present in these vaccines and induce allergic reactions against the novel 
CoV2. 21 Our finding is in contrast to data from the US22,23. However, the correlation between 
influenza vaccination and COVID-19 death rate in the US is much lower than in Europe12, 
probably because there is little variation in influenza vaccine coverage in the US. Our results 
are derived from population level data in Europe in the elderly, which might be a specifically 
susceptible fraction of the population.  

Non-pharmaceutical interventions are widely hailed in modeling studies as having 
prevented higher incidence figures of cases and deaths e.g. 24,25,26. While this might be true for 
some countries and some single interventions, we 27-29, and others 30-33, are skeptical. Careful 
modeling studies for Germany, for instance, show that, although Germany was comparatively 
early to react – first measures were introduced on March 8 and shortly after this a full country 
lockdown was enacted – the peak of the infection and of the reproduction numbers was 
reached in nearly all 420 German districts on or around March 8 and thus none of the NPIs 
could have been causally related to the reduction of cases, and hence deaths 34,35. A careful 
study of the cases of the first outbreak in Wuhan, China,36 shows this as well 37,38. The cases 
can be seen to peak on the 21st of January (there is a later peak a few days later, but this is due 
to a reporting outlier as the authors explain). This is the same day as the Chinese spring 
festival ends that had brought guests and travel to Wuhan and from Wuhan. After that the 
number of cases drops. The cordon sanitaire and lockdown of the airport and the city started 
on the 23rd of January. Considering that the reporting delay has to be also reckoned with, the 
true peak of the infections was likely already earlier. This means: even in Wuhan was the peak 
of the infection reached before the public health service had time to react. The ensuing 
reduction of cases is a misattribution: it is not due to the lockdown, but obviously to the fact 
that the virus follows its own dynamic which needs to be better understood. Thus, there is 
evidence that non-pharmaceutical interventions are less effective than often thought. Our 
analysis suggests: they seem to be rather an expression of fear and an escalating situation in a 
country. This would explain the positive association with Covid-19 related deaths. The 
association is not strong, but highly significant. Countries that saw a steep rise in cases and 
associated hospitalizations were of course more inclined to react by implementing more NPIs 
than others, and hence the number of NPIs might have been an expression of a potentially 
dangerous development. In our analysis a larger number of NPIs did not act as a preventive, 
else we would see a negative sign of the predictor. This does not mean that some NPIs, such as 
wearing face masks in high-risk settings or preventing mass gatherings might not have been 
important. This question cannot be answered by our analysis. But what we can clearly say is 
that when it comes to NPI the equation the more the better is simply not true. 
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We find it quite remarkable that only three variables help to explain roughly 60% of 
the variation in Covid-19 related deaths. It might be important to study other potential 
variables pertaining to the host39, such as vitamin D status40, which we were unable to study. 
In our other modeling study 11 we did not find evidence that health related variables, such as 
obesity, physical activity, or diabetes had a relevant influence. We think that the exposure to 
heavy metals, perhaps mercury, that are immunologically relevant as immune-suppressors, or 
widely used pharmacological substances such as anti-inflammatories might be relevant, but 
those data are difficult to glean. Another potentially important variable that has recently 
emerged, blood groups, we did not consider either 41,42. 

One might criticize our study on various accounts and the limitations of such an 
approach need to be kept in mind: 

First, there might have been collinearity between the three predictors found to be 
significant in the best model. However, both scatterplots (Supplementary Figures 3 and 4) and 
variance inflation factors (all <1.162) showed that there was no collinearity between these 
three variables.   

Second, we were unable to find vaccination data for all countries. Although it might 
have been a strategy to interpolate those cases with neighboring countries, for instance 
Andorra by Spain, or San Marino by Italy, or Monaco by France, or using multiple imputation 
by chained equations, we did not do that, because we have not enough knowledge about the 
situation in those countries. This reduced the number of cases, variability and also power. But 
statistical power was certainly not the problem of this study, as the clear significances show. 
We avoided overfitting as much as possible, and the goodness-of-fit statistics of the 
generalized linear models support this.  

Third, one potential problem we cannot remedy is the notorious unreliability of data or 
differences in the definition of cases, of deaths, and in reporting standards. This can be seen in 
the fact that Belgium is a clear outlier in all analyses that decreases the fit of the model. It is 
well known that the definition of Covid-19 related deaths in Belgium is more lenient than in 
other countries. Also, reporting systems might be less reliable in some countries compared 
with others. These are the limits of our data and our analyses. But considering the fact that 
the whole world, politicians and public health officials use exactly the same data for their 
decisions should allow us to use them for analysis. The data base was most shaky when it 
comes to non-pharmaceutical interventions. The reporting standards on the dedicated pages 
in Wikipedia are not uniform, and thus for all countries that were not already mentioned in 26 
we had to decide what measures were implemented. If in doubt we attempted to err on the 
conservative side and assumed a stricter regime of NPIs, for instance if a stay-at-home order 
was issued or a country lockdown it was logical to assume that also schools, non-essential 
businesses were closed and mass gatherings forbidden. It is exactly because test strategies vary 
a lot across countries, with some countries having tested nearly half the populations and 
others testing only in symptomatic cases or special groups, that we have adopted the strategy 
to use case numbers standardized on tests conducted in a country. This allows us to better 
compare the variable across countries. The fact that the relationship between Covid-19 
related deaths and test-standardized cases is weaker than one would expect is exactly due to 
this situation and to the fact that being a case, when considering the number of tests in a 
country, has only a weak relationship with becoming a fatality. It has been shown that the case 
fatality rate is much less than previously assumed and estimated to be 0.25% 43. In Germany 
the case-fatality rate has recently been calculated from well documented cohorts to be 0.12 to 
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0.16% 44. The still widely circulating higher case fatality rates are due to the fact that they are 
largely calculated using raw, absolute figures without knowledge of the real prevalence.45 But 
also standardized figures might be unreliable. Often the same person is tested multiple times. 
Thus, we likely overestimate the number of cases by some margin. This would mean: the true 
link between being a case and becoming a fatality is probably even weaker. 

Considering all these weaknesses our paper also has some strengths: restricting the 
analysis to Europe means that we have a comparatively homogeneous sample which 
nevertheless has enough variability. While all countries issued warnings the way it was 
implemented differed widely, from suggestions and recommendations in Sweden to very strict 
stay-at-home orders that were policed in Spain, from nearly no regard in Belarus to very strict 
political measures in France and Germany. Thus, we likely see a representative laboratory for 
the world, except that we do not cover any variance in ethnicity.  

In conclusion we see that Covid-19 related deaths are most importantly dependent on 
the flu-vaccination rate among the elderly in a country: the higher the vaccination rate, the 
higher the Covid-19 death toll, explaining about 30% of the total variation. The number of 
cases is the second, unsurprising driver, but its relationship is weaker than one would assume. 
Non-pharmaceutical interventions seem to be more an indicator of the seriousness of the 
situation in a country than a prevention of deaths. These three variables explain about 60% of 
the variability in Covid-19 related deaths. This might encourage others to look for other, 
perhaps even more important host factors that can explain why we see such a wide variability 
in cases and deaths. 

 

Methods 
 

We followed in essence the same procedures as outlined in the previous protocol 
deposited ahead of analysis (https://osf.io/x93np/). The only difference was that we used 
another database and different predictors. But otherwise the procedure was similar. We tried 
to balance the need for flexibility in an exploratory framework with the need for parsimony to 
avoid overfitting and sham significances as outlined in standard texts 46-50. 

 

Data Sources 

 

We used data on standardized COVID-19 cases and deaths (per 1.000.000 
inhabitants), cumulative numbers of PCR-tests for CoV2 and population data, as well as life 
expectancy data as provided by https://www.worldometers.info/coronavirus/#countries 
(accessed 30th of August) for 47 European countries (Albania, Andorra, Austria, Belarus, 
Belgium, Bosnia and Herzegovina, Bulgaria, Channel Islands, Croatia, Czechia, Denmark, 
Estonia, Faroe Islands, Finland, France, Germany, Gibraltar, Greece, Hungary, Iceland, 
Ireland, Isle of Man, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Moldova, 
Monaco, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, 
Russia, San Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, UK, Ukraine; the 
“Europe” tab of Worldometers’ Covid-19 site does not contain data for Cyprus). Since 
numbers of deaths were zero for Faroe Islands and Gibraltar, these two countries were 
excluded from the database, because the appropriate model, a generalized linear model to 
predict a gamma-distributed variable, does not allow for zeros in the predictor variable. 



11 
 

Missing life-expectancy data were retrieved from World-Bank registers or Wikipedia in some 
single cases. Start dates of the epidemic were retrieved from Wikipedia 
(https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Europe) with their associated country 
sites. Number of non-pharmaceutical interventions (NPIs: restrictions of mass gatherings, 
business closures, educational facilities closed, non-essential services closed, stay at home 
order issued, compulsory wearing of face masks) was retrieved from Hunter et al. 26 and 
checked against information on Wikipedia, which was also used as a source for those countries 
not covered by Hunter et al. 26. We added the number of NPIs to a simple numerical index 
that could range from 0 to 6 but in fact ranged from 1 to 6. We determined the date of the 
first political intervention in a country using the data provided on Wikipedia and calculated 
the time it took a government to react to the pandemic as the number of days from the date 
when the first case was known in a country to the date when the first political intervention 
was made public. We used influenza vaccination rates in the elderly (usually in persons aged 
65 and older) as presented in 12, which retrieved the data from EUROSTAT and the 
European Center for Disease Prevention and Control. Data for countries that were missing in 
this publication were retrieved from https://gateway.euro.who.int/en/indicators/infl_8-
influenza-vaccination-coverage-elderly/visualizations/#id=31628 (accessed August 31st 
2020). Vaccination data for Channel Islands and Isle of Man were interpolated with UK data. 
Data for Albania were taken from 51. We were not able to locate influenza vaccination data for 
Andorra, Bosnia, Liechtenstein, Moldovia, Monaco and San Marino. These six countries were 
therefore excluded from the analysis.  

 

Statistics 

 

The outcome of interest for this modeling study was the number of deaths per 
1.000.000 inhabitants. The following variables were used as putative predictors of this 
dependent variable: (i) the test-standardized number of cases (in %), calculated as the number 
of cases in a country divided by the number of tests in that country × 100; (ii) the population 
size; (iii) the influenza vaccination rate in the elderly; (iv) life expectancy (in years); (v) 
rapidity of a country’s government reaction (days from the first case to the first political 
intervention); (vi) the number of NPIs.  

In order to explore whether non-linear functions might be necessary, a generalized 
additive model was used 52,53. This indicated in fact that the variable “Percent test-
standardized cases” was nonlinearly related to the outcome, while all others did not exhibit 
non-linearity. Closer inspection showed that this non-linearity was solely due to one outlier, 
Albania. We therefore decided to remove Albania from the database for the subsequent 
analysis. 

Because the distribution of the outcome variable followed a gamma distribution well 
(Supplementary Figure 1), we calculated generalized linear models on a gamma-distributed 
variable with a log-link function. To build the best predictive model, we applied feature 
forward selection by successively reducing model uncertainty which was measured by a 
Kullback-Leibler divergence-based R2 measure 13. To avoid overfitting, the maximum number 
of variables was constrained to three. The Akaike Information Criterion (AIC), log-likelihood 
and deviance divided by degrees of freedom were also used as model goodness-of-fit indicators. 

We also calculated a standard multiple linear regression model on a log-transformed 
dependent variable. The log-transformation produced an outcome variable with an 
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approximately normal distribution (Shapiro-Wilk normality test p=0.530, S-Figure 2). The 
best model was again built using feature forward selection based on R2 as the measure of 
uncertainty.  

All analyses were calculated independently both with Statistica Version 13.3, and R 
version 4.0.2 and converged on the same results. 

 

 

Data Availability 
 

Data and analysis scripts are available at https://osf.io/852dc/ once the paper is published and 
until then for reviewers. 

 

References 
 

1 Wu, C. et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and 
Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. 
JAMA Internal Medicine, doi:10.1001/jamainternmed.2020.0994 (2020). 

2 Adhikari, S. P. et al. Epidemiology, causes, clinical manifestation and diagnosis, 
prevention and control of coronavirus disease (COVID-19) during the early outbreak 
period: a scoping review. Infectious Diseases of Poverty 9, 29, doi:10.1186/s40249-020-
00646-x (2020). 

3 Qin, C. et al. Dysregulation of immune response in patients with COVID-19 in 
Wuhan, China. Clinical Infectious Diseases, doi:10.1093/cid/ciaa248 (2020). 

4 Shi, S. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients 
With COVID-19 in Wuhan, China. JAMA Cardiology, 
doi:10.1001/jamacardio.2020.0950 (2020). 

5 Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 
5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 323, 
2052-2059, doi:10.1001/jama.2020.6775 (2020). 

6 Onder, G., Rezza, G. & Brusaferro, S. Case-Fatality Rate and Characteristics of 
Patients Dying in Relation to COVID-19 in Italy. JAMA, doi:10.1001/jama.2020.4683 
(2020). 

7 Grasselli, G. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected 
With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 323, 
1574-1581, doi:10.1001/jama.2020.5394 (2020). 

8 Modi, C., Boehm, V., Ferraro, S., Stein, G. & Seljak, U. Total COVID-19 Mortality in 
Italy: Excess Mortality and Age Dependence through Time-Series Analysis. medRxiv, 
2020.2004.2015.20067074, doi:10.1101/2020.04.15.20067074 (2020). 

9 Weinberger, D. M. et al. Estimation of Excess Deaths Associated With the COVID-19 
Pandemic in the United States, March to May 2020. JAMA Internal Medicine, 
doi:10.1001/jamainternmed.2020.3391 (2020). 

10 Miles, D., Stedman, M. & Heald, A. Living with covid-19: Balancing costs against 
benefits in the face of the virus. National Institute Economic Review 253, R60-R76, 
doi:10.1017/nie.2020.30 (2020). 



13 
 

11 Walach, H. & Hockertz, S. What association do political interventions, environmental 
and health variables have with the number of Covid-19 cases and deaths? A linear 
modeling approach. medRxiv, 2020.2006.2018.20135012, 
doi:10.1101/2020.06.18.20135012 (2020). 

12 EBMPHET  Consortium. COVID-19 Severity in Europe and the USA: Could the 
Seasonal Influenza Vaccination Play a Role? SSRN, doi:10.2139/ssrn.3621446  

13 Cameron, C. A. & Windmeijer, F. A. G. An R-squared measure of goodness of fit for 
some common nonlinear regression models. Journal of Econometrics 77, 329-342, 
doi:https://doi.org/10.1016/S0304-4076(96)01818-0 (1997). 

14 Rainwater-Lovett, K., Chun, K. & Lessler, J. Influenza outbreak control practices and 
the effectiveness of interventions in long-term care facilities: a systematic review. 
Influenza Other Respir Viruses 8, 74-82, doi:10.1111/irv.12203 (2014). 

15 Cowling, B. J. et al. Increased risk of noninfluenza respiratory virus infections 
associated with receipt of inactivated influenza vaccine. Clin Infect Dis 54, 1778-1783, 
doi:10.1093/cid/cis307 (2012). 

16 Wolff, G. G. Influenza vaccination and respiratory virus interference among 
Department of Defense personnel during the 2017–2018 influenza season. Vaccine 38, 
350-354, doi:https://doi.org/10.1016/j.vaccine.2019.10.005 (2020). 

17 Anderson, M. L., Dobkin, C. & Gorry, D. The Effect of Influenza Vaccination for the 
Elderly on Hospitalization and Mortality. Annals of Internal Medicine 172, 445-452, 
doi:10.7326/M19-3075 (2020). 

18 Kim, H., Lim, K. Y., Kang, J., Park, J. W. & Park, S.-H. Macrophagic myofasciitis and 
subcutaneous pseudolymphoma caused by aluminium adjuvants. Scientific Reports 10, 
11834, doi:10.1038/s41598-020-68849-8 (2020). 

19 Guimarães, L. E., Baker, B., Perricone, C. & Shoenfeld, Y. Vaccines, adjuvants and 
autoimmunity. Pharmacological Research 100, 190-209, 
doi:http://dx.doi.org/10.1016/j.phrs.2015.08.003 (2015). 

20 Gherardi, R. K. & Authier, F. J. Macrophagic myofascitis: characterization and 
pathophysiology. Lupus 21, 184-189 (2012). 

21 Arumugham, V. Proteins that contaminate influenza vaccines have high homology to 
SARS-CoV-2 proteins thus increasing risk of severe COVID-19 disease and mortality. 
Zenodo, doi:http://doi.org/10.5281/zenodo.3997694 (2020). 

22 Zanettini, C. et al. Influenza Vaccination and COVID19 Mortality in the USA. 
medRxiv, 2020.2006.2024.20129817, doi:10.1101/2020.06.24.20129817 (2020). 

23 Zein, J. G., Whelan, G. & Erzurum, S. C. Safety of Influenza Vaccine during COVID-
19. Journal of Clinical and Translational Science in print, 1-6, doi:10.1017/cts.2020.543 
(2020). 

24 Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on 
COVID-19 in Europe. Nature, doi:10.1038/s41586-020-2405-7 (2020). 

25 Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the 
effectiveness of interventions. Science, eabb9789, doi:10.1126/science.abb9789 (2020). 

26 Hunter, P. R., Colon-Gonzalez, F., Brainard, J. S. & Rushton, S. Impact of non-
pharmaceutical interventions against COVID-19 in Europe: a quasi-experimental 
study. medRxiv, 2020.2005.2001.20088260, doi:10.1101/2020.05.01.20088260 (2020). 

27 Kuhbandner, C., Homburg, S., Walach, H. & Hockertz, S. Comment on Dehning et al 
(Science, 15 May 2020, eabb9789: Inferring change points in the spread of COVID-19 
reveals the effectiveness of interventions). advance Social Sciences and Humanities 

Preprint Preprint, doi:https://doi.org/10.31124/advance.12362645.v1 (2020). 



14 
 

28 Kuhbandner, C., Homburg, S., Walach, H. & Hockertz, S. Was Germany’s Corona 
Lockdown Necessary? Advande - Sage Preprint, doi:10.31124/advance.12362645.v3 
(2020). 

29 Klement, R. J. The SARS-CoV-2 Crisis: Has Medicine Finally Entered a Reductionist 
Era? Complementary Medicine Research 27, 207-208, doi:10.1159/000510453 (2020). 

30 Daunizeau, J., Moran, R. J., Mattout, J. & Friston, K. On the reliability of model-based 
predictions in the context of the current COVID epidemic event: impact of outbreak 
peak phase and data paucity. medRxiv, 2020.2004.2024.20078485, 
doi:10.1101/2020.04.24.20078485 (2020). 

31 Moran, R. J. et al. Estimating required lockdown cycles before immunity to SARS-
CoV-2: Model-based analyses of susceptible population sizes, S0, in seven European 
countries including the UK and Ireland. medRxiv, 2020.2004.2010.20060426, 
doi:10.1101/2020.04.10.20060426 (2020). 

32 Friston, K. J. et al. Tracking and tracing in the UK: a dynamic causal modelling study. 
arXiv 2005.07994 (2020). 

33 Friston, K. J. et al. Second waves, social distancing, and the spread of COVID-19 
across America. arxiv 1104.3344v1 (2020). 

34 Wieland, T. Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in 
Germany on the County Level. medRxiv, 2020.2005.2014.20101667, 
doi:10.1101/2020.05.14.20101667 (2020). 

35 Wieland, T. A phenomenological approach to assessing the effectiveness of COVID-
19 related nonpharmaceutical interventions in Germany. Safety Science 131, 104924, 
doi:https://doi.org/10.1016/j.ssci.2020.104924 (2020). 

36 Pan, A. et al. Association of Public Health Interventions With the Epidemiology of the 
COVID-19 Outbreak in Wuhan, China. JAMA online first, 
doi:10.1001/jama.2020.6130 (2020). 

37 Walach, H. & Hockertz, S. Wuhan Covid19 data – more questions than answers. 
Toxicology 440, 152486, doi:https://doi.org/10.1016/j.tox.2020.152486 (2020). 

38 Walach, H. & Hockertz, S. A Reply to Dr. Pan’s and Dr. Wu’s Response: “Wuhan 
COVID-19 data – an example to show the importance of public health interventions 
to fight against the pandemic”. Toxicology 441, 152524, doi:10.1016/j.tox.2020.152524 
(2020). 

39 Klement, R. Systems thinking about SARS-CoV-2. Frontiers in Public Health in print, 
doi:10.3389/fpubh.2020.585229 (2020). 

40 Grant, W. B. et al. Evidence that vitamin D supplementatoin could reduce rsik of 
influenza and COVID-19 infections and deaths. Nutrients 12, 988, 
doi:10.3390/nu12040988 (2020). 

41 Breiman, A., Ruvën-Clouet, N. & Le Pendu, J. Harnessing the natural anti-glycan 
immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. 
PLOS Pathogens 16, e1008556, doi:10.1371/journal.ppat.1008556 (2020). 

42 Miotto, M., Di Rienzo, L., Gosti, G., Milanetti, E. & Ruocco, G. Does blood type affect 
the COVID-19 infection pattern? arXiv:2007.06296 (2020). 

43 Ioannidis, J. The infection fatality rate of COVID-19 inferred from seroprevalence 
data. medRxiv, 2020.2005.2013.20101253, doi:10.1101/2020.05.13.20101253 (2020). 

44 Schrappe, M. et al. Thesenpapier 4.0: Die Pandemie durch SARS-CoV-2/Covid-19 - 
der Übergang zur chronischen Phase - Verbesserung der Outcomes in Sicht - Stabile 
Kontrolle: Würde und Humanität wahren - Diskursverengung vermeiden: Corona 
nicht politisieren. (www.matthias.schrappe.com, Köln, 2020). 



15 
 

45 Klement, R. J. & Bandyopadhyay, P. S. The Epistemology of a Positive SARS-CoV-2 
Test. Acta Biotheoretica, doi:10.1007/s10441-020-09393-w (2020). 

46 Breen, R., Karlson, K. B. & Holm, A. Interpreting and understanding logits, probits, 
and other nonlinear probability models. Annual Review of Sociology 44, 4.1-1.16, 
doi:10.1146/annurev-soc-073117-04142 (2018). 

47 Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical 

Information-Theoretic Approach.  (1998). 
48 McQuarrie, A. D. R. & Tsai, C.-L. Regression and time-series model selection.  (World 

Scientific Publishers, 1998). 
49 Liao, T. F. Interpreting Probability Models: Logit, Probit, and Other Generalized Models.  

(Sage, 1994). 
50 Cohen, J. & Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral 

Sciences.  (Erlbaum, 1983). 
51 Preza, I., Nelaj, E. & Bino, s. Influenza vaccination in Albania (Abstract). International 

Journal of Infectious Diseases 79, 102-103 (2019). 
52 James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning 

with an Introduction to R.  (Springer, 2017, orig. 2013). 
53 Hastie, T. & Tibshirani, R. Generalised Additive Models.  (Chapman & Hall, 1990). 

 



16 
 

Acknowledgement 
 

We thank the EBMPHET-Consortium for help with vaccination data and advice on 
Generalised Additive Models. 

 

Author Contributions 
 

HW initiated this study, collated the data, calculated the first analyses using Statistica and 
wrote the first draft of the MS. RK checked the data, calculated the GLM using R and 
contributed to writing and discussion of the results. 

 

Conflict of Interests 
 

None of the authors has a conflict of interest. 

 

  



17 
 

Supplementary Material 

Figures 
 

S-Figure 1 – Distribution of dependent variable (deaths/1.000.000 Inhabitants) 
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S-Figure 2 – Distribution of ln-transformed dependent variable (Number of 
deaths/1.000.000 inhabitants) 
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S-Figure 3 – Scatterplot of the variables %test standardized cases and vaccination 
coverage 
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S-Figure 4 – Scatterplot of the variables %test standardized cases and number of 
NPIs 

 


