Dataset Open Access

Building height map of Germany

Frantz, David; Schug, Franz; Okujeni, Akpona; Navacchi, Claudio; Wagner, Wolfgang; van der Linden, Sebastian; Hostert, Patrick


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.4066295", 
  "container_title": "Remote Sensing of Environment", 
  "language": "eng", 
  "title": "Building height map of Germany", 
  "issued": {
    "date-parts": [
      [
        2020, 
        10, 
        5
      ]
    ]
  }, 
  "abstract": "<p>Urban areas have a manifold and far-reaching impact on our environment, and the three-dimensional structure is a key aspect for characterizing the urban environment.&nbsp;</p>\n\n<p>This dataset features a map of building height predictions for entire Germany on a 10m grid based on Sentinel-1A/B and Sentinel-2A/B time series. We utilized machine learning regression to extrapolate building height reference information to the entire country. The reference data were obtained from several freely and openly available 3D Building Models originating from official data sources (building footprint: cadaster, building height: airborne laser scanning), and represent the average building height within a radius of 50m relative to each pixel. Building height was only estimated for built-up areas (European Settlement Mask), and building height predictions &lt;2m were set to 0m.</p>\n\n<p><strong>Temporal extent</strong><br>\nThe acquisition dates of the different data sources vary to some degree:<br>\n- Independent variables: Sentinel-2 data are from 2018; Sentinel-1 data are from 2017.<br>\n- Dependent variables: the 3D building models are from 2012-2020 depending on data provider.<br>\n- Settlement mask: the ESM is based on a mosaic of imagery from 2014-2016.<br>\nConsidering that net change of building stock is positive in Germany, the building height map is representative for ca. 2015.&nbsp;</p>\n\n<p><strong>Data format</strong><br>\nThe data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). Metadata are located within the Tiff, partly in the FORCE domain. There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. Building height values are in meters, scaled by 10, i.e. a pixel value of 69 = 6.9m.</p>\n\n<p><strong>Further information</strong><br>\nFor further information, please see the publication or contact David Frantz (david.frantz@geo.hu-berlin.de).<br>\nA web-visualization of this dataset is available <a href=\"https://ows.geo.hu-berlin.de/webviewer/building-height/\">here</a>.</p>\n\n<p><strong>Publication</strong><br>\nFrantz, D., Schug, F., Okujeni, A., Navacchi, C., Wagner, W., van der Linden, S., &amp; Hostert, P. (2021). National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sensing of Environment, 252, 112128. DOI: <a href=\"https://doi.org/10.1016/j.rse.2020.112128\">https://doi.org/10.1016/j.rse.2020.112128</a></p>\n\n<p><strong>Acknowledgements</strong><br>\nThe dataset was generated by FORCE v. 3.1 (<a href=\"https://doi.org/10.3390/rs11091124\">paper</a>, <a href=\"https://github.com/davidfrantz/force\">code</a>), which is freely available software under the terms of the GNU General Public License v. &gt;= 3. Sentinel imagery were obtained from the <a href=\"https://scihub.copernicus.eu/\">European Space Agency and the European Commission</a>. The European Settlement Mask was obtained from the <a href=\"https://data.jrc.ec.europa.eu/dataset/8bd2b792-cc33-4c11-afd1-b8dd60b44f3b\">European Commission</a>. 3D building models were obtained from <a href=\"https://www.businesslocationcenter.de/en/economic-atlas/download-portal/\">Berlin Partner f&uuml;r Wirtschaft und Technologie GmbH</a>, <a href=\"http://suche.transparenz.hamburg.de/dataset/3d-stadtmodell-lod2-de-hamburg4?forceWeb=true\">Freie und Hansestadt Hamburg / Landesbetrieb Geoinformation und Vermessung</a>, <a href=\"https://opendata.potsdam.de/explore/dataset/3d-gebaudemodell-lod2-citygml/information\">Landeshauptstadt Potsdam</a>, <a href=\"https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/3d_gebaeudemodelle/index.html\">Bezirksregierung K&ouml;ln / Geobasis NRW</a>, and <a href=\"https://www.geoportal-th.de/de-de/Downloadbereiche/Download-Offene-Geodaten-Th%C3%BCringen/Download-3D-Geb%C3%A4ude\">Kompetenzzentrum Geodateninfrastruktur Th&uuml;ringen</a>. This dataset was partly produced on <a href=\"https://eodc.eu\">EODC</a>&nbsp;- we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.</p>\n\n<p><strong>Funding</strong><br>\nThis dataset was produced with funding from the European Research Council (ERC) under the European Union&#39;s Horizon 2020 research and innovation programme (<a href=\"https://boku.ac.at/understanding-the-role-of-material-stock-patterns-for-the-transformation-to-a-sustainable-society-mat-stocks\">MAT_STOCKS</a>, grant agreement No 741950).</p>", 
  "author": [
    {
      "family": "Frantz, David"
    }, 
    {
      "family": "Schug, Franz"
    }, 
    {
      "family": "Okujeni, Akpona"
    }, 
    {
      "family": "Navacchi, Claudio"
    }, 
    {
      "family": "Wagner, Wolfgang"
    }, 
    {
      "family": "van der Linden, Sebastian"
    }, 
    {
      "family": "Hostert, Patrick"
    }
  ], 
  "page": "112128", 
  "volume": "252", 
  "version": "v. 1.0", 
  "type": "dataset", 
  "id": "4066295"
}
1,066
195
views
downloads
All versions This version
Views 1,0661,066
Downloads 195195
Data volume 103.8 GB103.8 GB
Unique views 946946
Unique downloads 170170

Share

Cite as